从传统的双电子到新兴的多电子锌碘电池:优势、挑战和未来展望

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zongyou Jiang, Xing Yang, Jing Zhang, Jiansheng Yang, Bowen Sun, Zhiqiang Sun, Jiaojiao Xue, Jinhai He, Zixu Sun, Hua Kun Liu, Shi Xue Dou
{"title":"从传统的双电子到新兴的多电子锌碘电池:优势、挑战和未来展望","authors":"Zongyou Jiang, Xing Yang, Jing Zhang, Jiansheng Yang, Bowen Sun, Zhiqiang Sun, Jiaojiao Xue, Jinhai He, Zixu Sun, Hua Kun Liu, Shi Xue Dou","doi":"10.1002/adfm.202511754","DOIUrl":null,"url":null,"abstract":"This review highlights the progress and challenges in the development of aqueous zinc‐iodine batteries (ZiBs), emphasizing the shift from traditional two‐electron systems to advanced multi‐electron configurations. ZiBs are promising due to their abundant raw materials, environmental sustainability, and high theoretical capacity. However, issues like the polyiodide shuttle effect and zinc dendrite formation impede performance and stability. Recent advances in polar materials, catalysts, separators, and iodine‐anchoring compounds aim to enhance cycle life, specific capacity, and discharge voltage. Multi‐electron ZiBs, utilizing higher iodine oxidation states, offer improved energy density and efficiency, with innovations such as halide ions and organic molecules stabilizing high‐valence iodine species for enhanced electron transfer. Future directions include functional group engineering, stabilization of iodine species, material optimization, and AI‐assisted integration, enhancing energy density, lifespan, and cost‐effectiveness for large‐scale and portable applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"279 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Conventional Two‐Electron to Emerging Multi‐Electron Zinc‐Iodine Batteries: Advantages, Challenges, and Future Perspectives\",\"authors\":\"Zongyou Jiang, Xing Yang, Jing Zhang, Jiansheng Yang, Bowen Sun, Zhiqiang Sun, Jiaojiao Xue, Jinhai He, Zixu Sun, Hua Kun Liu, Shi Xue Dou\",\"doi\":\"10.1002/adfm.202511754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review highlights the progress and challenges in the development of aqueous zinc‐iodine batteries (ZiBs), emphasizing the shift from traditional two‐electron systems to advanced multi‐electron configurations. ZiBs are promising due to their abundant raw materials, environmental sustainability, and high theoretical capacity. However, issues like the polyiodide shuttle effect and zinc dendrite formation impede performance and stability. Recent advances in polar materials, catalysts, separators, and iodine‐anchoring compounds aim to enhance cycle life, specific capacity, and discharge voltage. Multi‐electron ZiBs, utilizing higher iodine oxidation states, offer improved energy density and efficiency, with innovations such as halide ions and organic molecules stabilizing high‐valence iodine species for enhanced electron transfer. Future directions include functional group engineering, stabilization of iodine species, material optimization, and AI‐assisted integration, enhancing energy density, lifespan, and cost‐effectiveness for large‐scale and portable applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"279 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202511754\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202511754","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文综述了锌碘水溶液电池(zbs)的发展进展和面临的挑战,强调了从传统的双电子系统到先进的多电子结构的转变。ZiBs因其丰富的原材料、环境可持续性和较高的理论产能而具有广阔的发展前景。然而,诸如多碘化物穿梭效应和锌枝晶形成等问题阻碍了性能和稳定性。极性材料、催化剂、分离器和碘锚定化合物的最新进展旨在提高循环寿命、比容量和放电电压。多电子ZiBs,利用更高的碘氧化态,提供改进的能量密度和效率,与创新,如卤化物离子和有机分子稳定高价碘物种,以增强电子转移。未来的发展方向包括官能团工程、碘物质稳定、材料优化和人工智能辅助集成,提高大规模和便携式应用的能量密度、寿命和成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From Conventional Two‐Electron to Emerging Multi‐Electron Zinc‐Iodine Batteries: Advantages, Challenges, and Future Perspectives
This review highlights the progress and challenges in the development of aqueous zinc‐iodine batteries (ZiBs), emphasizing the shift from traditional two‐electron systems to advanced multi‐electron configurations. ZiBs are promising due to their abundant raw materials, environmental sustainability, and high theoretical capacity. However, issues like the polyiodide shuttle effect and zinc dendrite formation impede performance and stability. Recent advances in polar materials, catalysts, separators, and iodine‐anchoring compounds aim to enhance cycle life, specific capacity, and discharge voltage. Multi‐electron ZiBs, utilizing higher iodine oxidation states, offer improved energy density and efficiency, with innovations such as halide ions and organic molecules stabilizing high‐valence iodine species for enhanced electron transfer. Future directions include functional group engineering, stabilization of iodine species, material optimization, and AI‐assisted integration, enhancing energy density, lifespan, and cost‐effectiveness for large‐scale and portable applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信