配体场分裂参数优化实现了高压钠层状氧化物阴极过渡金属氧化还原活性和结构稳定性的协同增强

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiannan Zhou, Yu Li, Shuqiang Li, Zilu Wang, Qiaojun Li, Xueying Lu, Zhixu Qiu, Chuan Wu, Ying Bai
{"title":"配体场分裂参数优化实现了高压钠层状氧化物阴极过渡金属氧化还原活性和结构稳定性的协同增强","authors":"Qiannan Zhou, Yu Li, Shuqiang Li, Zilu Wang, Qiaojun Li, Xueying Lu, Zhixu Qiu, Chuan Wu, Ying Bai","doi":"10.1002/adfm.202509825","DOIUrl":null,"url":null,"abstract":"Triggering oxygen anionic redox to achieve high‐capacity Na<jats:italic><jats:sub>x</jats:sub></jats:italic>TMO<jats:sub>2</jats:sub> faces a critical challenge because of the irreversible chemo‐mechanical distortion and uncontrollable oxygen release at high voltage. To circumvent this issue, a strategy of stimulating transition metal (TM) redox activity based on the ligand‐field splitting parameter (<jats:italic>Δ</jats:italic>) is proposed. Specifically, strongly polarized Mg−O−Fe configurations in the O3‐NaNi<jats:sub>0.1</jats:sub>Fe<jats:sub>0.2</jats:sub>Mn<jats:sub>0.5</jats:sub>Mg<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (O3‐NaNFMMO) is constructed to effectively optimize the electron occupancy state of Fe 3<jats:italic>d</jats:italic> orbital by reducing its <jats:italic>Δ</jats:italic>, thereby stimulating the Fe redox activity while alleviating excessive oxygen redox. Additionally, the Mg pillar in Na sites ensures more extractable Na<jats:sup>+</jats:sup> and suppresses the Na‐free layers formation at high voltage, which can simultaneously improve the specific capacity and cycling stability. As a result, the designed cost‐effective O3‐NaNFMMO cathode delivers an outstanding specific capacity of 198 mAh g<jats:sup>−1</jats:sup> at 0.1 C and high‐voltage cycling stability with 78% capacity retention after 1500 cycles at 5 C. Notably, the thermal degradation and air sensitivity, as the critical barriers to commercialization, are significantly suppressed in O3‐NaNFMMO cathode. This work establishes a universal design principle for high‐performance Na<jats:italic><jats:sub>x</jats:sub></jats:italic>TMO<jats:sub>2</jats:sub> cathodes and offers a scalable pathway toward practical, cost‐effective SIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"18 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ligand‐Field Splitting Parameter Optimization Achieves Synergistic Enhancement of Transition Metal Redox Activity and Structural Stability in High‐Voltage Sodium Layered Oxide Cathodes\",\"authors\":\"Qiannan Zhou, Yu Li, Shuqiang Li, Zilu Wang, Qiaojun Li, Xueying Lu, Zhixu Qiu, Chuan Wu, Ying Bai\",\"doi\":\"10.1002/adfm.202509825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triggering oxygen anionic redox to achieve high‐capacity Na<jats:italic><jats:sub>x</jats:sub></jats:italic>TMO<jats:sub>2</jats:sub> faces a critical challenge because of the irreversible chemo‐mechanical distortion and uncontrollable oxygen release at high voltage. To circumvent this issue, a strategy of stimulating transition metal (TM) redox activity based on the ligand‐field splitting parameter (<jats:italic>Δ</jats:italic>) is proposed. Specifically, strongly polarized Mg−O−Fe configurations in the O3‐NaNi<jats:sub>0.1</jats:sub>Fe<jats:sub>0.2</jats:sub>Mn<jats:sub>0.5</jats:sub>Mg<jats:sub>0.2</jats:sub>O<jats:sub>2</jats:sub> (O3‐NaNFMMO) is constructed to effectively optimize the electron occupancy state of Fe 3<jats:italic>d</jats:italic> orbital by reducing its <jats:italic>Δ</jats:italic>, thereby stimulating the Fe redox activity while alleviating excessive oxygen redox. Additionally, the Mg pillar in Na sites ensures more extractable Na<jats:sup>+</jats:sup> and suppresses the Na‐free layers formation at high voltage, which can simultaneously improve the specific capacity and cycling stability. As a result, the designed cost‐effective O3‐NaNFMMO cathode delivers an outstanding specific capacity of 198 mAh g<jats:sup>−1</jats:sup> at 0.1 C and high‐voltage cycling stability with 78% capacity retention after 1500 cycles at 5 C. Notably, the thermal degradation and air sensitivity, as the critical barriers to commercialization, are significantly suppressed in O3‐NaNFMMO cathode. This work establishes a universal design principle for high‐performance Na<jats:italic><jats:sub>x</jats:sub></jats:italic>TMO<jats:sub>2</jats:sub> cathodes and offers a scalable pathway toward practical, cost‐effective SIBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509825\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509825","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于不可逆的化学机械畸变和高压下不可控的氧释放,触发氧阴离子氧化还原以实现高容量的NaxTMO2面临着严峻的挑战。为了避免这个问题,提出了一种基于配体-场分裂参数(Δ)的刺激过渡金属(TM)氧化还原活性的策略。具体而言,在O3‐NaNi0.1Fe0.2Mn0.5Mg0.2O2 (O3‐NaNFMMO)中构建强极化的Mg−O−Fe构型,通过降低其Δ有效优化Fe 3d轨道的电子占据态,从而刺激Fe的氧化还原活性,同时减轻过量的氧氧化还原。此外,Na位点的Mg柱确保了更多的Na+可提取性,并抑制了高压下无Na层的形成,这可以同时提高比容量和循环稳定性。因此,设计的具有成本效益的O3‐NaNFMMO阴极在0.1℃下具有198 mAh g−1的出色比容量,在5℃下1500次循环后具有78%的高电压循环稳定性,值得注意的是,作为商业化的关键障碍,O3‐NaNFMMO阴极的热降解和空气敏感性被显著抑制。这项工作建立了高性能NaxTMO2阴极的通用设计原则,并为实用的、具有成本效益的sib提供了可扩展的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ligand‐Field Splitting Parameter Optimization Achieves Synergistic Enhancement of Transition Metal Redox Activity and Structural Stability in High‐Voltage Sodium Layered Oxide Cathodes
Triggering oxygen anionic redox to achieve high‐capacity NaxTMO2 faces a critical challenge because of the irreversible chemo‐mechanical distortion and uncontrollable oxygen release at high voltage. To circumvent this issue, a strategy of stimulating transition metal (TM) redox activity based on the ligand‐field splitting parameter (Δ) is proposed. Specifically, strongly polarized Mg−O−Fe configurations in the O3‐NaNi0.1Fe0.2Mn0.5Mg0.2O2 (O3‐NaNFMMO) is constructed to effectively optimize the electron occupancy state of Fe 3d orbital by reducing its Δ, thereby stimulating the Fe redox activity while alleviating excessive oxygen redox. Additionally, the Mg pillar in Na sites ensures more extractable Na+ and suppresses the Na‐free layers formation at high voltage, which can simultaneously improve the specific capacity and cycling stability. As a result, the designed cost‐effective O3‐NaNFMMO cathode delivers an outstanding specific capacity of 198 mAh g−1 at 0.1 C and high‐voltage cycling stability with 78% capacity retention after 1500 cycles at 5 C. Notably, the thermal degradation and air sensitivity, as the critical barriers to commercialization, are significantly suppressed in O3‐NaNFMMO cathode. This work establishes a universal design principle for high‐performance NaxTMO2 cathodes and offers a scalable pathway toward practical, cost‐effective SIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信