HfAlOx铁电电容器中多电平存储器的压痕失效及抑制

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Keyu Bao, Zhipeng Wang, Jiajia Liao, Shubin Wen, Jie Jiang, Hua Chen, Hongze Liu, Fei Yan, Shijie Jia, Junhui Wang, Ren‐Ci Peng, Yichun Zhou
{"title":"HfAlOx铁电电容器中多电平存储器的压痕失效及抑制","authors":"Keyu Bao, Zhipeng Wang, Jiajia Liao, Shubin Wen, Jie Jiang, Hua Chen, Hongze Liu, Fei Yan, Shijie Jia, Junhui Wang, Ren‐Ci Peng, Yichun Zhou","doi":"10.1002/adfm.202509227","DOIUrl":null,"url":null,"abstract":"Multi‐level HfO<jats:sub>2</jats:sub>‐based ferroelectrics demonstrate considerable potential for next‐generation data storage systems. However, their application faces critical reliability limitations due to the pronounced imprint effect. This study systematically investigates imprint‐induced operational deviations in 2‐bit/cell HfAlO<jats:sub>x</jats:sub> ferroelectric capacitors, revealing significant coercive voltage shifts within minutes at room‐temperature that substantially compromise intermediate state re‐writing accuracy. First‐order reversal curve analysis quantitatively resolves the imprint‐generated internal electric field distribution, while impedance spectroscopy and X‐ray photoelectron spectroscopy identify charged oxygen vacancies as the dominant imprint mechanism. Phase‐field simulations further unveil how internal electric fields alter domain switching dynamics through temporally advanced and retarded polarization reversal, directly explaining the distorted hysteresis behavior and intermediate state re‐writing failures. To mitigate this critical issue, a pre‐programming protocol enabling controlled oxygen vacancy charge redistribution is developed, achieving precise intermediate states programming under room‐temperature operation. The mechanistic understanding and imprint suppression method presented in this work provides critical insights for advancing the reliability of HfO<jats:sub>2</jats:sub>‐based ferroelectric memory devices toward practical multi‐level storage applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"57 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Imprint Failure and Suppression of the Multi‐Level Memory in HfAlOx Ferroelectric Capacitor\",\"authors\":\"Keyu Bao, Zhipeng Wang, Jiajia Liao, Shubin Wen, Jie Jiang, Hua Chen, Hongze Liu, Fei Yan, Shijie Jia, Junhui Wang, Ren‐Ci Peng, Yichun Zhou\",\"doi\":\"10.1002/adfm.202509227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi‐level HfO<jats:sub>2</jats:sub>‐based ferroelectrics demonstrate considerable potential for next‐generation data storage systems. However, their application faces critical reliability limitations due to the pronounced imprint effect. This study systematically investigates imprint‐induced operational deviations in 2‐bit/cell HfAlO<jats:sub>x</jats:sub> ferroelectric capacitors, revealing significant coercive voltage shifts within minutes at room‐temperature that substantially compromise intermediate state re‐writing accuracy. First‐order reversal curve analysis quantitatively resolves the imprint‐generated internal electric field distribution, while impedance spectroscopy and X‐ray photoelectron spectroscopy identify charged oxygen vacancies as the dominant imprint mechanism. Phase‐field simulations further unveil how internal electric fields alter domain switching dynamics through temporally advanced and retarded polarization reversal, directly explaining the distorted hysteresis behavior and intermediate state re‐writing failures. To mitigate this critical issue, a pre‐programming protocol enabling controlled oxygen vacancy charge redistribution is developed, achieving precise intermediate states programming under room‐temperature operation. The mechanistic understanding and imprint suppression method presented in this work provides critical insights for advancing the reliability of HfO<jats:sub>2</jats:sub>‐based ferroelectric memory devices toward practical multi‐level storage applications.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509227\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509227","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于HfO2的多能级铁电体在下一代数据存储系统中显示出相当大的潜力。然而,由于明显的印记效应,它们的应用面临着关键的可靠性限制。本研究系统地研究了2位/单元halox铁电电容器的压印引起的操作偏差,揭示了在室温下几分钟内显著的顽压电压位移,这大大损害了中间状态重写的准确性。一阶反转曲线分析定量地解决了压印产生的内部电场分布,而阻抗谱和X射线光电子能谱则确定了带电氧空位是主要的压印机制。相场模拟进一步揭示了内部电场如何通过时间上提前和延迟的极化反转改变畴切换动力学,直接解释了扭曲的迟滞行为和中间状态重写失败。为了缓解这一关键问题,开发了一种可控制氧空位电荷再分配的预编程协议,在室温操作下实现精确的中间状态编程。在这项工作中提出的机制理解和印记抑制方法为将基于HfO2的铁电存储器件的可靠性提高到实际的多级存储应用提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Imprint Failure and Suppression of the Multi‐Level Memory in HfAlOx Ferroelectric Capacitor
Multi‐level HfO2‐based ferroelectrics demonstrate considerable potential for next‐generation data storage systems. However, their application faces critical reliability limitations due to the pronounced imprint effect. This study systematically investigates imprint‐induced operational deviations in 2‐bit/cell HfAlOx ferroelectric capacitors, revealing significant coercive voltage shifts within minutes at room‐temperature that substantially compromise intermediate state re‐writing accuracy. First‐order reversal curve analysis quantitatively resolves the imprint‐generated internal electric field distribution, while impedance spectroscopy and X‐ray photoelectron spectroscopy identify charged oxygen vacancies as the dominant imprint mechanism. Phase‐field simulations further unveil how internal electric fields alter domain switching dynamics through temporally advanced and retarded polarization reversal, directly explaining the distorted hysteresis behavior and intermediate state re‐writing failures. To mitigate this critical issue, a pre‐programming protocol enabling controlled oxygen vacancy charge redistribution is developed, achieving precise intermediate states programming under room‐temperature operation. The mechanistic understanding and imprint suppression method presented in this work provides critical insights for advancing the reliability of HfO2‐based ferroelectric memory devices toward practical multi‐level storage applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信