Zhuo-Ran Huang, Faisal Munir Bhutta, Nimra Farooq, M. Ali Paracha, Ying Li
{"title":"在模型无关情景和轻夸克模型中重新研究半光子B→D(*)τν¯τ衰变","authors":"Zhuo-Ran Huang, Faisal Munir Bhutta, Nimra Farooq, M. Ali Paracha, Ying Li","doi":"10.1103/physrevd.111.115035","DOIUrl":null,"url":null,"abstract":"In this work, we revisit the possible new physics solutions by analyzing the observables associated with B</a:mi>→</a:mo>D</a:mi></a:mrow>(</a:mo>*</a:mo>)</a:mo></a:mrow></a:msup>τ</a:mi>ν</a:mi></a:mrow>¯</a:mo></a:mrow></a:mover></a:mrow>τ</a:mi></a:mrow></a:msub></a:mrow></a:math> decays. To explore the structure of new physics, the form factors of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:mi>B</h:mi><h:mo stretchy=\"false\">→</h:mo><h:msup><h:mi>D</h:mi><h:mrow><h:mo stretchy=\"false\">(</h:mo><h:mo>*</h:mo><h:mo stretchy=\"false\">)</h:mo></h:mrow></h:msup></h:math> decays play a crucial role. In this study, we utilize the form factor results obtained from a simultaneous fit to Belle data and lattice QCD calculations. Using these form factors, we conduct a global fit of the new physics Wilson coefficients, incorporating the most recent experimental data. Additionally, we use the form factors and Wilson coefficients to make predictions for physical observables, including the lepton flavor universality ratio <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>R</m:mi><m:msup><m:mi>D</m:mi><m:mrow><m:mo stretchy=\"false\">(</m:mo><m:mo>*</m:mo><m:mo stretchy=\"false\">)</m:mo></m:mrow></m:msup></m:msub></m:math>, polarized observables, and the normalized angular coefficients <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mo stretchy=\"false\">⟨</q:mo><q:mi>I</q:mi><q:mo stretchy=\"false\">⟩</q:mo></q:math>’s related to the fourfold decays <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>B</u:mi><u:mo stretchy=\"false\">→</u:mo><u:msup><u:mi>D</u:mi><u:mo>*</u:mo></u:msup><u:mo stretchy=\"false\">(</u:mo><u:mo stretchy=\"false\">→</u:mo><u:mi>D</u:mi><u:mi>π</u:mi><u:mo>,</u:mo><u:mi>D</u:mi><u:mi>γ</u:mi><u:mo stretchy=\"false\">)</u:mo><u:mi>τ</u:mi><u:msub><u:mover accent=\"true\"><u:mi>ν</u:mi><u:mo stretchy=\"false\">¯</u:mo></u:mover><u:mi>τ</u:mi></u:msub></u:math>. These predictions are calculated in both model independent scenarios and for three different leptoquark models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"270 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinvestigating the semileptonic B→D(*)τν¯τ decays in the model independent scenarios and leptoquark models\",\"authors\":\"Zhuo-Ran Huang, Faisal Munir Bhutta, Nimra Farooq, M. Ali Paracha, Ying Li\",\"doi\":\"10.1103/physrevd.111.115035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we revisit the possible new physics solutions by analyzing the observables associated with B</a:mi>→</a:mo>D</a:mi></a:mrow>(</a:mo>*</a:mo>)</a:mo></a:mrow></a:msup>τ</a:mi>ν</a:mi></a:mrow>¯</a:mo></a:mrow></a:mover></a:mrow>τ</a:mi></a:mrow></a:msub></a:mrow></a:math> decays. To explore the structure of new physics, the form factors of <h:math xmlns:h=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><h:mi>B</h:mi><h:mo stretchy=\\\"false\\\">→</h:mo><h:msup><h:mi>D</h:mi><h:mrow><h:mo stretchy=\\\"false\\\">(</h:mo><h:mo>*</h:mo><h:mo stretchy=\\\"false\\\">)</h:mo></h:mrow></h:msup></h:math> decays play a crucial role. In this study, we utilize the form factor results obtained from a simultaneous fit to Belle data and lattice QCD calculations. Using these form factors, we conduct a global fit of the new physics Wilson coefficients, incorporating the most recent experimental data. Additionally, we use the form factors and Wilson coefficients to make predictions for physical observables, including the lepton flavor universality ratio <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msub><m:mi>R</m:mi><m:msup><m:mi>D</m:mi><m:mrow><m:mo stretchy=\\\"false\\\">(</m:mo><m:mo>*</m:mo><m:mo stretchy=\\\"false\\\">)</m:mo></m:mrow></m:msup></m:msub></m:math>, polarized observables, and the normalized angular coefficients <q:math xmlns:q=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><q:mo stretchy=\\\"false\\\">⟨</q:mo><q:mi>I</q:mi><q:mo stretchy=\\\"false\\\">⟩</q:mo></q:math>’s related to the fourfold decays <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:mi>B</u:mi><u:mo stretchy=\\\"false\\\">→</u:mo><u:msup><u:mi>D</u:mi><u:mo>*</u:mo></u:msup><u:mo stretchy=\\\"false\\\">(</u:mo><u:mo stretchy=\\\"false\\\">→</u:mo><u:mi>D</u:mi><u:mi>π</u:mi><u:mo>,</u:mo><u:mi>D</u:mi><u:mi>γ</u:mi><u:mo stretchy=\\\"false\\\">)</u:mo><u:mi>τ</u:mi><u:msub><u:mover accent=\\\"true\\\"><u:mi>ν</u:mi><u:mo stretchy=\\\"false\\\">¯</u:mo></u:mover><u:mi>τ</u:mi></u:msub></u:math>. These predictions are calculated in both model independent scenarios and for three different leptoquark models. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"270 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.115035\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.115035","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Reinvestigating the semileptonic B→D(*)τν¯τ decays in the model independent scenarios and leptoquark models
In this work, we revisit the possible new physics solutions by analyzing the observables associated with B→D(*)τν¯τ decays. To explore the structure of new physics, the form factors of B→D(*) decays play a crucial role. In this study, we utilize the form factor results obtained from a simultaneous fit to Belle data and lattice QCD calculations. Using these form factors, we conduct a global fit of the new physics Wilson coefficients, incorporating the most recent experimental data. Additionally, we use the form factors and Wilson coefficients to make predictions for physical observables, including the lepton flavor universality ratio RD(*), polarized observables, and the normalized angular coefficients ⟨I⟩’s related to the fourfold decays B→D*(→Dπ,Dγ)τν¯τ. These predictions are calculated in both model independent scenarios and for three different leptoquark models. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.