{"title":"微生物群与Tregs的相互作用:结肠炎的靶标。","authors":"Keywan Mortezaee","doi":"10.1007/s12094-025-03974-2","DOIUrl":null,"url":null,"abstract":"<p><p>Gut-resident microbiota associate with host immune system to promote homeostasis, and regulatory T cells (Tregs) are critical in the maintenance of immune balance. Tregs have immunosuppressive activity, and their presence hampers the development of inflammatory diseases. This review aims to unravel microbiome impact on Tregs in bowel inflammation and harnessing such interaction to combat colitis as a separate disease or a consequence of immune checkpoint inhibitor (ICI) therapy of cancer. Short-chain fatty acids (SCFAs) are microbial-derived metabolites associated positively with Treg generation and maintenance and being effective for hampering bowel inflammation. Treg induction shapes gut microbiota profile and support microorganism colonization in their niche and protect the host from inflammation, while suppression of Treg differentiation and activity directs microbiota-induced Th17 expansion and inducing inflammation. Thus, balancing Treg representation with Th17 cells and Treg reprogramming through manipulation of gut microbiota can offer therapy. Microbiota epithelial attachment/detachment and interaction with antigen-presenting cells (APCs) are important for the final fate of T cell signature. Fecal microbial transplantation (FMT) is a strategy for promoting normobiosis and represents a navel approach to targeting colitis. FMT with appropriate microbiota from healthy donors can reinforce microbial diversity, density and persistence to enrich their environment with transforming growth factor (TGF)-β, induce IL-10 producing APCs and reinforce gut barrier, with all these being effective for recovering Tregs, restoring intestinal homeostasis and hampering colitis. ICI therapy of cancer may predispose subjects to colitis due to the impact on microbiome and reducing Treg population. FMT promotes local Treg reorchestration, being advantageous in cancer patients.</p>","PeriodicalId":50685,"journal":{"name":"Clinical & Translational Oncology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiota interaction with Tregs: a target for colitis.\",\"authors\":\"Keywan Mortezaee\",\"doi\":\"10.1007/s12094-025-03974-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut-resident microbiota associate with host immune system to promote homeostasis, and regulatory T cells (Tregs) are critical in the maintenance of immune balance. Tregs have immunosuppressive activity, and their presence hampers the development of inflammatory diseases. This review aims to unravel microbiome impact on Tregs in bowel inflammation and harnessing such interaction to combat colitis as a separate disease or a consequence of immune checkpoint inhibitor (ICI) therapy of cancer. Short-chain fatty acids (SCFAs) are microbial-derived metabolites associated positively with Treg generation and maintenance and being effective for hampering bowel inflammation. Treg induction shapes gut microbiota profile and support microorganism colonization in their niche and protect the host from inflammation, while suppression of Treg differentiation and activity directs microbiota-induced Th17 expansion and inducing inflammation. Thus, balancing Treg representation with Th17 cells and Treg reprogramming through manipulation of gut microbiota can offer therapy. Microbiota epithelial attachment/detachment and interaction with antigen-presenting cells (APCs) are important for the final fate of T cell signature. Fecal microbial transplantation (FMT) is a strategy for promoting normobiosis and represents a navel approach to targeting colitis. FMT with appropriate microbiota from healthy donors can reinforce microbial diversity, density and persistence to enrich their environment with transforming growth factor (TGF)-β, induce IL-10 producing APCs and reinforce gut barrier, with all these being effective for recovering Tregs, restoring intestinal homeostasis and hampering colitis. ICI therapy of cancer may predispose subjects to colitis due to the impact on microbiome and reducing Treg population. FMT promotes local Treg reorchestration, being advantageous in cancer patients.</p>\",\"PeriodicalId\":50685,\"journal\":{\"name\":\"Clinical & Translational Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical & Translational Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12094-025-03974-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical & Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12094-025-03974-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Microbiota interaction with Tregs: a target for colitis.
Gut-resident microbiota associate with host immune system to promote homeostasis, and regulatory T cells (Tregs) are critical in the maintenance of immune balance. Tregs have immunosuppressive activity, and their presence hampers the development of inflammatory diseases. This review aims to unravel microbiome impact on Tregs in bowel inflammation and harnessing such interaction to combat colitis as a separate disease or a consequence of immune checkpoint inhibitor (ICI) therapy of cancer. Short-chain fatty acids (SCFAs) are microbial-derived metabolites associated positively with Treg generation and maintenance and being effective for hampering bowel inflammation. Treg induction shapes gut microbiota profile and support microorganism colonization in their niche and protect the host from inflammation, while suppression of Treg differentiation and activity directs microbiota-induced Th17 expansion and inducing inflammation. Thus, balancing Treg representation with Th17 cells and Treg reprogramming through manipulation of gut microbiota can offer therapy. Microbiota epithelial attachment/detachment and interaction with antigen-presenting cells (APCs) are important for the final fate of T cell signature. Fecal microbial transplantation (FMT) is a strategy for promoting normobiosis and represents a navel approach to targeting colitis. FMT with appropriate microbiota from healthy donors can reinforce microbial diversity, density and persistence to enrich their environment with transforming growth factor (TGF)-β, induce IL-10 producing APCs and reinforce gut barrier, with all these being effective for recovering Tregs, restoring intestinal homeostasis and hampering colitis. ICI therapy of cancer may predispose subjects to colitis due to the impact on microbiome and reducing Treg population. FMT promotes local Treg reorchestration, being advantageous in cancer patients.
期刊介绍:
Clinical and Translational Oncology is an international journal devoted to fostering interaction between experimental and clinical oncology. It covers all aspects of research on cancer, from the more basic discoveries dealing with both cell and molecular biology of tumour cells, to the most advanced clinical assays of conventional and new drugs. In addition, the journal has a strong commitment to facilitating the transfer of knowledge from the basic laboratory to the clinical practice, with the publication of educational series devoted to closing the gap between molecular and clinical oncologists. Molecular biology of tumours, identification of new targets for cancer therapy, and new technologies for research and treatment of cancer are the major themes covered by the educational series. Full research articles on a broad spectrum of subjects, including the molecular and cellular bases of disease, aetiology, pathophysiology, pathology, epidemiology, clinical features, and the diagnosis, prognosis and treatment of cancer, will be considered for publication.