RNF122靶向STING在K95、K117和K155残基上的泛素化,以调节硬骨鱼的抗病毒反应。

IF 4.7 1区 生物学 Q1 ZOOLOGY
Xiao-Wei Qin, Chuan-Rui Li, Min-Cong Liang, Tian-Hao Li, Yan-Lin You, Shao-Ping Weng, Chang-Jun Guo, Jian-Guo He
{"title":"RNF122靶向STING在K95、K117和K155残基上的泛素化,以调节硬骨鱼的抗病毒反应。","authors":"Xiao-Wei Qin, Chuan-Rui Li, Min-Cong Liang, Tian-Hao Li, Yan-Lin You, Shao-Ping Weng, Chang-Jun Guo, Jian-Guo He","doi":"10.24272/j.issn.2095-8137.2025.033","DOIUrl":null,"url":null,"abstract":"<p><p>Ring finger protein 122 (RNF122), an E3 ubiquitin ligase, orchestrates antiviral immune responses in mammals by targeting retinoic acid-inducible gene 1 and melanoma differentiation-associated gene 5 for ubiquitination. However, its functional relevance in teleosts has yet to be clearly defined, particularly regarding the identification of substrate-specific regulatory sites. This study characterized RNF122 from mandarin fish ( <i>Siniperca chuatsi</i>), termed <i>sc</i>RNF122, and investigated its regulatory impact on stimulator of interferon genes (STING)-mediated antiviral signaling. Results showed that <i>sc</i>RNF122 expression was up-regulated in response to mandarin fish ranavirus (MRV) infection, and its overexpression suppressed <i>sc</i>STING-mediated interferon (IFN) production and enhanced MRV replication. Co-immunoprecipitation confirmed a direct interaction between <i>sc</i>RNF122 and <i>sc</i>STING. Functional assays demonstrated that <i>sc</i>RNF122 facilitated <i>sc</i>STING degradation through the ubiquitin-proteasome pathway, a process impeded by MG132 treatment. Ubiquitination analyses of various <i>sc</i>STING mutants revealed that <i>sc</i>RNF122 catalyzed <i>sc</i>STING ubiquitination at K95, K117, and K155 residues. Moreover, <i>sc</i>RNF122 significantly impaired <i>sc</i>STING-dependent antiviral responses by engaging negative regulatory elements within the signaling cascade. Overall, <i>sc</i>RNF122 was identified as a negative modulator of STING-mediated IFN signaling in mandarin fish, diminishing STING-dependent antiviral activity and promoting its degradation via the ubiquitin-proteasome pathway at lysine residues K95, K117, and K155. These findings provide mechanistic insight into the post-translational control of STING in teleosts and establish a foundation for future investigations into antiviral immune regulation.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"46 4","pages":"750-760"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464376/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNF122 targets STING for ubiquitination at residues K95, K117, and K155 to regulate antiviral responses in a teleost fish.\",\"authors\":\"Xiao-Wei Qin, Chuan-Rui Li, Min-Cong Liang, Tian-Hao Li, Yan-Lin You, Shao-Ping Weng, Chang-Jun Guo, Jian-Guo He\",\"doi\":\"10.24272/j.issn.2095-8137.2025.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ring finger protein 122 (RNF122), an E3 ubiquitin ligase, orchestrates antiviral immune responses in mammals by targeting retinoic acid-inducible gene 1 and melanoma differentiation-associated gene 5 for ubiquitination. However, its functional relevance in teleosts has yet to be clearly defined, particularly regarding the identification of substrate-specific regulatory sites. This study characterized RNF122 from mandarin fish ( <i>Siniperca chuatsi</i>), termed <i>sc</i>RNF122, and investigated its regulatory impact on stimulator of interferon genes (STING)-mediated antiviral signaling. Results showed that <i>sc</i>RNF122 expression was up-regulated in response to mandarin fish ranavirus (MRV) infection, and its overexpression suppressed <i>sc</i>STING-mediated interferon (IFN) production and enhanced MRV replication. Co-immunoprecipitation confirmed a direct interaction between <i>sc</i>RNF122 and <i>sc</i>STING. Functional assays demonstrated that <i>sc</i>RNF122 facilitated <i>sc</i>STING degradation through the ubiquitin-proteasome pathway, a process impeded by MG132 treatment. Ubiquitination analyses of various <i>sc</i>STING mutants revealed that <i>sc</i>RNF122 catalyzed <i>sc</i>STING ubiquitination at K95, K117, and K155 residues. Moreover, <i>sc</i>RNF122 significantly impaired <i>sc</i>STING-dependent antiviral responses by engaging negative regulatory elements within the signaling cascade. Overall, <i>sc</i>RNF122 was identified as a negative modulator of STING-mediated IFN signaling in mandarin fish, diminishing STING-dependent antiviral activity and promoting its degradation via the ubiquitin-proteasome pathway at lysine residues K95, K117, and K155. These findings provide mechanistic insight into the post-translational control of STING in teleosts and establish a foundation for future investigations into antiviral immune regulation.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"46 4\",\"pages\":\"750-760\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12464376/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2025.033\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2025.033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

环指蛋白122 (RNF122)是一种E3泛素连接酶,通过靶向维甲酸诱导基因1和黑色素瘤分化相关基因5来调控哺乳动物的泛素化,从而协调抗病毒免疫反应。然而,它在硬骨鱼中的功能相关性尚未明确定义,特别是关于底物特异性调节位点的鉴定。本研究鉴定了鳜鱼(sininiperca chuatsi)的RNF122,并将其命名为scRNF122,研究了其对干扰素基因刺激因子(STING)介导的抗病毒信号传导的调控作用。结果表明,scnf122在鳜鱼ranv (MRV)感染后表达上调,其过表达抑制scsting介导的干扰素(IFN)产生,增强MRV复制。共免疫沉淀证实了scRNF122和scSTING之间的直接相互作用。功能分析表明,scRNF122通过泛素-蛋白酶体途径促进scSTING降解,这一过程被MG132抑制。对不同scSTING突变体的泛素化分析显示,scnf122在K95、K117和K155位点催化scSTING泛素化。此外,scnf122通过参与信号级联中的负调控元件,显著损害了scsting依赖性抗病毒应答。总体而言,scRNF122被鉴定为鳜鱼sting介导的IFN信号的负调节因子,降低sting依赖的抗病毒活性,并通过赖氨酸残基K95、K117和K155上的泛素-蛋白酶体途径促进其降解。这些发现为硬骨鱼中STING的翻译后控制提供了机制见解,并为未来研究抗病毒免疫调节奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RNF122 targets STING for ubiquitination at residues K95, K117, and K155 to regulate antiviral responses in a teleost fish.

Ring finger protein 122 (RNF122), an E3 ubiquitin ligase, orchestrates antiviral immune responses in mammals by targeting retinoic acid-inducible gene 1 and melanoma differentiation-associated gene 5 for ubiquitination. However, its functional relevance in teleosts has yet to be clearly defined, particularly regarding the identification of substrate-specific regulatory sites. This study characterized RNF122 from mandarin fish ( Siniperca chuatsi), termed scRNF122, and investigated its regulatory impact on stimulator of interferon genes (STING)-mediated antiviral signaling. Results showed that scRNF122 expression was up-regulated in response to mandarin fish ranavirus (MRV) infection, and its overexpression suppressed scSTING-mediated interferon (IFN) production and enhanced MRV replication. Co-immunoprecipitation confirmed a direct interaction between scRNF122 and scSTING. Functional assays demonstrated that scRNF122 facilitated scSTING degradation through the ubiquitin-proteasome pathway, a process impeded by MG132 treatment. Ubiquitination analyses of various scSTING mutants revealed that scRNF122 catalyzed scSTING ubiquitination at K95, K117, and K155 residues. Moreover, scRNF122 significantly impaired scSTING-dependent antiviral responses by engaging negative regulatory elements within the signaling cascade. Overall, scRNF122 was identified as a negative modulator of STING-mediated IFN signaling in mandarin fish, diminishing STING-dependent antiviral activity and promoting its degradation via the ubiquitin-proteasome pathway at lysine residues K95, K117, and K155. These findings provide mechanistic insight into the post-translational control of STING in teleosts and establish a foundation for future investigations into antiviral immune regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Zoological Research
Zoological Research Medicine-General Medicine
CiteScore
7.60
自引率
10.20%
发文量
1937
审稿时长
8 weeks
期刊介绍: Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信