{"title":"海洋波西多尼亚(Posidonia oceanica)绿叶和根茎提取物的保护作用人血脑屏障体外模型的研制。","authors":"Giulia Abruscato, Manuela Mauro, Marie-Christine Boucau, Vincenzo Arizza, Mirella Vazzana, Lucie Dehouck, Fabien Gosselet, Claudio Luparello, Pietra Candela","doi":"10.3390/biology14060699","DOIUrl":null,"url":null,"abstract":"<p><p><i>Posidonia oceanica</i> (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood-brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that <i>P. oceanica</i>'s extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189290/pdf/","citationCount":"0","resultStr":"{\"title\":\"Protective Effects of Extracts from Green Leaves and Rhizomes of <i>Posidonia oceanica</i> (L.) Delile on an In Vitro Model of the Human Blood-Brain Barrier.\",\"authors\":\"Giulia Abruscato, Manuela Mauro, Marie-Christine Boucau, Vincenzo Arizza, Mirella Vazzana, Lucie Dehouck, Fabien Gosselet, Claudio Luparello, Pietra Candela\",\"doi\":\"10.3390/biology14060699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Posidonia oceanica</i> (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood-brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that <i>P. oceanica</i>'s extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14060699\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14060699","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Protective Effects of Extracts from Green Leaves and Rhizomes of Posidonia oceanica (L.) Delile on an In Vitro Model of the Human Blood-Brain Barrier.
Posidonia oceanica (L.) Delile, a Mediterranean seagrass, is rich in bioactive compounds with anti-inflammatory potential. While marine-derived molecules are increasingly studied, their direct effects on blood-brain barrier (BBB) integrity under inflammatory conditions remain largely unexplored. This study evaluated the ability of aqueous extracts from its green leaves (GLEs) and rhizomes (REs) to protect the BBB using a human in vitro model consisting of brain-like endothelial cells co-cultured with brain pericytes. The model was exposed to TNFα, with or without GLEs or REs. We assessed NO production, endothelial permeability, expression of IL-6, NLRP3, ICAM-1, VCAM-1, CLAUDIN-5, and VE-CADHERIN, and the localization of junctional proteins. TNFα increased NO and IL-6 release, upregulated ICAM-1, VCAM-1, and NLRP3, and impaired BBB integrity by altering junctional protein levels and distribution. Co-treatment with GLEs or REs reduced the production of NO, the expression of NLRP3 and adhesion molecules and restored tight and adherens junction integrity. IL-6 levels remained unaffected. These findings suggest that P. oceanica's extracts may help preserve BBB function and mitigate inflammation-induced damage. While further studies are needed to assess their bioavailability and in vivo efficacy, these natural compounds represent promising candidates for developing preventive strategies against neuroinflammatory disorders.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.