利用强化学习来评估单细胞数据中的命运决策。

IF 3.6 3区 生物学 Q1 BIOLOGY
Zeyu Fu, Chunlin Chen, Song Wang, Junping Wang, Shilei Chen
{"title":"利用强化学习来评估单细胞数据中的命运决策。","authors":"Zeyu Fu, Chunlin Chen, Song Wang, Junping Wang, Shilei Chen","doi":"10.3390/biology14060679","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing now profiles whole transcriptomes for hundreds of thousands of cells, yet existing trajectory-inference tools rarely pinpoint where and when fate decisions are made. We present single-cell reinforcement learning (scRL), an actor-critic framework that recasts differentiation as a sequential decision process on an interpretable latent manifold derived with Latent Dirichlet Allocation. The critic learns state-value functions that quantify fate intensity for each cell, while the actor traces optimal developmental routes across the manifold. Benchmarks on hematopoiesis, mouse endocrinogenesis, acute myeloid leukemia, and gene-knockout and irradiation datasets show that scRL surpasses fifteen state-of-the-art methods in five independent evaluation dimensions, recovering early decision states that precede overt lineage commitment and revealing regulators such as <i>Dapp1</i>. Beyond fate decisions, the same framework produces competitive measures of lineage-contribution intensity without requiring ground-truth probabilities, providing a unified and extensible approach for decoding developmental logic from single-cell data.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189676/pdf/","citationCount":"0","resultStr":"{\"title\":\"scRL: Utilizing Reinforcement Learning to Evaluate Fate Decisions in Single-Cell Data.\",\"authors\":\"Zeyu Fu, Chunlin Chen, Song Wang, Junping Wang, Shilei Chen\",\"doi\":\"10.3390/biology14060679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing now profiles whole transcriptomes for hundreds of thousands of cells, yet existing trajectory-inference tools rarely pinpoint where and when fate decisions are made. We present single-cell reinforcement learning (scRL), an actor-critic framework that recasts differentiation as a sequential decision process on an interpretable latent manifold derived with Latent Dirichlet Allocation. The critic learns state-value functions that quantify fate intensity for each cell, while the actor traces optimal developmental routes across the manifold. Benchmarks on hematopoiesis, mouse endocrinogenesis, acute myeloid leukemia, and gene-knockout and irradiation datasets show that scRL surpasses fifteen state-of-the-art methods in five independent evaluation dimensions, recovering early decision states that precede overt lineage commitment and revealing regulators such as <i>Dapp1</i>. Beyond fate decisions, the same framework produces competitive measures of lineage-contribution intensity without requiring ground-truth probabilities, providing a unified and extensible approach for decoding developmental logic from single-cell data.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14060679\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14060679","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

单细胞RNA测序现在可以描绘数十万个细胞的整个转录组,然而现有的轨迹推断工具很少能精确地指出命运决定是在何时何地做出的。我们提出单细胞强化学习(scRL),这是一个行为者批评框架,它将分化重塑为一个序列决策过程,该决策过程是由潜在狄利克雷分配衍生的可解释潜在流形上的。批评家学习状态-价值函数,量化每个细胞的命运强度,而行动者则通过多种途径追踪最佳发展路线。造血、小鼠内分泌、急性髓性白血病、基因敲除和辐照数据集的基准表明,scRL在五个独立的评估维度上超过了15种最先进的方法,恢复了公开谱系承诺之前的早期决策状态,并揭示了Dapp1等调节因子。除了命运决定之外,相同的框架还产生了谱系贡献强度的竞争性测量,而不需要基础事实概率,为从单细胞数据解码发育逻辑提供了统一和可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scRL: Utilizing Reinforcement Learning to Evaluate Fate Decisions in Single-Cell Data.

Single-cell RNA sequencing now profiles whole transcriptomes for hundreds of thousands of cells, yet existing trajectory-inference tools rarely pinpoint where and when fate decisions are made. We present single-cell reinforcement learning (scRL), an actor-critic framework that recasts differentiation as a sequential decision process on an interpretable latent manifold derived with Latent Dirichlet Allocation. The critic learns state-value functions that quantify fate intensity for each cell, while the actor traces optimal developmental routes across the manifold. Benchmarks on hematopoiesis, mouse endocrinogenesis, acute myeloid leukemia, and gene-knockout and irradiation datasets show that scRL surpasses fifteen state-of-the-art methods in five independent evaluation dimensions, recovering early decision states that precede overt lineage commitment and revealing regulators such as Dapp1. Beyond fate decisions, the same framework produces competitive measures of lineage-contribution intensity without requiring ground-truth probabilities, providing a unified and extensible approach for decoding developmental logic from single-cell data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信