{"title":"人工智能驱动的人类病理转录组预测:从分子洞察到临床应用。","authors":"Xiaoya Chen, Huinan Xu, Shengjie Yu, Wan Hu, Zhongjin Zhang, Xue Wang, Yue Yuan, Mingyue Wang, Liang Chen, Xiumei Lin, Yinlei Hu, Pengfei Cai","doi":"10.3390/biology14060651","DOIUrl":null,"url":null,"abstract":"<p><p>Gene expression regulation underpins cellular function and disease progression, yet its complexity and the limitations of conventional detection methods hinder clinical translation. In this review, we define \"predict\" as the AI-driven inference of gene expression levels and regulatory mechanisms from non-invasive multimodal data (e.g., histopathology images, genomic sequences, and electronic health records) instead of direct molecular assays. We systematically examine and analyze the current approaches for predicting gene expression and diagnosing diseases, highlighting their respective advantages and limitations. Machine learning algorithms and deep learning models excel in extracting meaningful features from diverse biomedical modalities, enabling tools like PathChat and Prov-GigaPath to improve cancer subtyping, therapy response prediction, and biomarker discovery. Despite significant progress, persistent challenges-such as data heterogeneity, noise, and ethical issues including privacy and algorithmic bias-still limit broad clinical adoption. Emerging solutions like cross-modal pretraining frameworks, federated learning, and fairness-aware model design aim to overcome these barriers. Case studies in precision oncology illustrate AI's ability to decode tumor ecosystems and predict treatment outcomes. By harmonizing multimodal data and advancing ethical AI practices, this field holds immense potential to propel personalized medicine forward, although further innovation is needed to address the issues of scalability, interpretability, and equitable deployment.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189417/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications.\",\"authors\":\"Xiaoya Chen, Huinan Xu, Shengjie Yu, Wan Hu, Zhongjin Zhang, Xue Wang, Yue Yuan, Mingyue Wang, Liang Chen, Xiumei Lin, Yinlei Hu, Pengfei Cai\",\"doi\":\"10.3390/biology14060651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gene expression regulation underpins cellular function and disease progression, yet its complexity and the limitations of conventional detection methods hinder clinical translation. In this review, we define \\\"predict\\\" as the AI-driven inference of gene expression levels and regulatory mechanisms from non-invasive multimodal data (e.g., histopathology images, genomic sequences, and electronic health records) instead of direct molecular assays. We systematically examine and analyze the current approaches for predicting gene expression and diagnosing diseases, highlighting their respective advantages and limitations. Machine learning algorithms and deep learning models excel in extracting meaningful features from diverse biomedical modalities, enabling tools like PathChat and Prov-GigaPath to improve cancer subtyping, therapy response prediction, and biomarker discovery. Despite significant progress, persistent challenges-such as data heterogeneity, noise, and ethical issues including privacy and algorithmic bias-still limit broad clinical adoption. Emerging solutions like cross-modal pretraining frameworks, federated learning, and fairness-aware model design aim to overcome these barriers. Case studies in precision oncology illustrate AI's ability to decode tumor ecosystems and predict treatment outcomes. By harmonizing multimodal data and advancing ethical AI practices, this field holds immense potential to propel personalized medicine forward, although further innovation is needed to address the issues of scalability, interpretability, and equitable deployment.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"14 6\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology14060651\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14060651","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
AI-Driven Transcriptome Prediction in Human Pathology: From Molecular Insights to Clinical Applications.
Gene expression regulation underpins cellular function and disease progression, yet its complexity and the limitations of conventional detection methods hinder clinical translation. In this review, we define "predict" as the AI-driven inference of gene expression levels and regulatory mechanisms from non-invasive multimodal data (e.g., histopathology images, genomic sequences, and electronic health records) instead of direct molecular assays. We systematically examine and analyze the current approaches for predicting gene expression and diagnosing diseases, highlighting their respective advantages and limitations. Machine learning algorithms and deep learning models excel in extracting meaningful features from diverse biomedical modalities, enabling tools like PathChat and Prov-GigaPath to improve cancer subtyping, therapy response prediction, and biomarker discovery. Despite significant progress, persistent challenges-such as data heterogeneity, noise, and ethical issues including privacy and algorithmic bias-still limit broad clinical adoption. Emerging solutions like cross-modal pretraining frameworks, federated learning, and fairness-aware model design aim to overcome these barriers. Case studies in precision oncology illustrate AI's ability to decode tumor ecosystems and predict treatment outcomes. By harmonizing multimodal data and advancing ethical AI practices, this field holds immense potential to propel personalized medicine forward, although further innovation is needed to address the issues of scalability, interpretability, and equitable deployment.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.