酵母中Atg8-和torc1介导活性的协同功能。

IF 2.2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yeast Pub Date : 2025-06-26 DOI:10.1002/yea.4003
Yumiko Oba, Miyuki Higuchi, Naoka Takahashi, Haruko Katsuta, Naoki Koike, Takashi Ushimaru, Yoko Kimura
{"title":"酵母中Atg8-和torc1介导活性的协同功能。","authors":"Yumiko Oba, Miyuki Higuchi, Naoka Takahashi, Haruko Katsuta, Naoki Koike, Takashi Ushimaru, Yoko Kimura","doi":"10.1002/yea.4003","DOIUrl":null,"url":null,"abstract":"<p><p>The target of rapamycin complex 1 (TORC1) protein kinase plays an important role in regulating various cellular activities in response to nutrient availability. In this study, an autophagy-related protein 8 (atg8) mutant of Saccharomyces cerevisiae was highly sensitive to cellular processes in which TORC1 activity was inhibited by rapamycin treatment or by a mutated allele of KOG1 which encodes a subunit of TORC1. Atg8 exhibits both lipidation-dependent and -independent activities, each involving distinct factors. Lipidation of Atg8 is necessary for autophagy and functions with autophagy-related proteins like Atg7, whereas the lipidation-independent activities of Atg8 require Hfl1. The atg7Δhfl1Δ double mutant exhibited defects for the impaired TORC1 activities, suggesting that both lipidation-dependent and -independent functions of Atg8 are required for survival during impaired TORC1 activity. Moreover, atg8Δ and atg7Δhfl1Δ mutants exhibited sensitivity to metal ion Zn<sup>2+</sup> during low-dose rapamycin treatment. The results suggest that Atg8-mediated functions and TORC1 signaling events play an important role in cell growth, possibly by maintaining vacuole integrity.</p>","PeriodicalId":23870,"journal":{"name":"Yeast","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cooperative Function of Atg8- and TORC1-Mediated Activities in Yeast.\",\"authors\":\"Yumiko Oba, Miyuki Higuchi, Naoka Takahashi, Haruko Katsuta, Naoki Koike, Takashi Ushimaru, Yoko Kimura\",\"doi\":\"10.1002/yea.4003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The target of rapamycin complex 1 (TORC1) protein kinase plays an important role in regulating various cellular activities in response to nutrient availability. In this study, an autophagy-related protein 8 (atg8) mutant of Saccharomyces cerevisiae was highly sensitive to cellular processes in which TORC1 activity was inhibited by rapamycin treatment or by a mutated allele of KOG1 which encodes a subunit of TORC1. Atg8 exhibits both lipidation-dependent and -independent activities, each involving distinct factors. Lipidation of Atg8 is necessary for autophagy and functions with autophagy-related proteins like Atg7, whereas the lipidation-independent activities of Atg8 require Hfl1. The atg7Δhfl1Δ double mutant exhibited defects for the impaired TORC1 activities, suggesting that both lipidation-dependent and -independent functions of Atg8 are required for survival during impaired TORC1 activity. Moreover, atg8Δ and atg7Δhfl1Δ mutants exhibited sensitivity to metal ion Zn<sup>2+</sup> during low-dose rapamycin treatment. The results suggest that Atg8-mediated functions and TORC1 signaling events play an important role in cell growth, possibly by maintaining vacuole integrity.</p>\",\"PeriodicalId\":23870,\"journal\":{\"name\":\"Yeast\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yeast\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/yea.4003\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yeast","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/yea.4003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

rapamycin complex 1 (TORC1)蛋白激酶靶点在调节各种细胞活动以响应营养可利用性方面发挥重要作用。在这项研究中,酿酒酵母的自噬相关蛋白8 (atg8)突变体对TORC1活性被雷帕霉素处理或编码TORC1亚基的KOG1突变等位基因抑制的细胞过程高度敏感。at8表现出脂质依赖性和非依赖性活性,每一种都涉及不同的因素。Atg8的脂化对于自噬和自噬相关蛋白如Atg7起作用是必需的,而Atg8的脂化非依赖性活性需要Hfl1。atg7Δhfl1Δ双突变体表现出TORC1活性受损的缺陷,这表明Atg8的脂质依赖性和非依赖性功能都是TORC1活性受损期间生存所必需的。此外,atg8Δ和atg7Δhfl1Δ突变体在低剂量雷帕霉素治疗期间表现出对金属离子Zn2+的敏感性。结果表明,atg8介导的功能和TORC1信号事件可能通过维持液泡完整性在细胞生长中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative Function of Atg8- and TORC1-Mediated Activities in Yeast.

The target of rapamycin complex 1 (TORC1) protein kinase plays an important role in regulating various cellular activities in response to nutrient availability. In this study, an autophagy-related protein 8 (atg8) mutant of Saccharomyces cerevisiae was highly sensitive to cellular processes in which TORC1 activity was inhibited by rapamycin treatment or by a mutated allele of KOG1 which encodes a subunit of TORC1. Atg8 exhibits both lipidation-dependent and -independent activities, each involving distinct factors. Lipidation of Atg8 is necessary for autophagy and functions with autophagy-related proteins like Atg7, whereas the lipidation-independent activities of Atg8 require Hfl1. The atg7Δhfl1Δ double mutant exhibited defects for the impaired TORC1 activities, suggesting that both lipidation-dependent and -independent functions of Atg8 are required for survival during impaired TORC1 activity. Moreover, atg8Δ and atg7Δhfl1Δ mutants exhibited sensitivity to metal ion Zn2+ during low-dose rapamycin treatment. The results suggest that Atg8-mediated functions and TORC1 signaling events play an important role in cell growth, possibly by maintaining vacuole integrity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yeast
Yeast 生物-生化与分子生物学
CiteScore
5.30
自引率
3.80%
发文量
55
审稿时长
3 months
期刊介绍: Yeast publishes original articles and reviews on the most significant developments of research with unicellular fungi, including innovative methods of broad applicability. It is essential reading for those wishing to keep up to date with this rapidly moving field of yeast biology. Topics covered include: biochemistry and molecular biology; biodiversity and taxonomy; biotechnology; cell and developmental biology; ecology and evolution; genetics and genomics; metabolism and physiology; pathobiology; synthetic and systems biology; tools and resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信