汽车座椅及振动频率对不同年龄组不同腰椎间盘的不良影响。

IF 1.7 4区 医学 Q3 ENGINEERING, BIOMEDICAL
KaiFeng Zhang, JingFang Zhang, RuiChun Dong, ShiFu Zheng, ChengZe Li, Qian Li
{"title":"汽车座椅及振动频率对不同年龄组不同腰椎间盘的不良影响。","authors":"KaiFeng Zhang, JingFang Zhang, RuiChun Dong, ShiFu Zheng, ChengZe Li, Qian Li","doi":"10.1177/09544119251344365","DOIUrl":null,"url":null,"abstract":"<p><p>The prolonged whole-body vibration (WBV) may be one of the important factors contributing to low back pain. This study used a validated whole-body model and the WBV evaluation standard (ISO 2631-5:2018) to investigate the effects of car seat, frequency and age on the risk factors of the lumbar spine during prolonged exposure to WBV. The modal frequencies contributing more to the human resonance were first preliminarily predicted by modal analysis, and then sinusoidal excitations with frequencies of 1, 3, 5, 7, 9, 11 and 13 Hz were applied for transient analysis. On this basis, the adverse effects of long-term WBV on the lumbar spine were assessed based on the risk factors defined in the WBV evaluation standard (ISO 2631-5:2018). The transient analysis and risk factor calculation demonstrated that the responses exhibited a pronounced frequency dependence, with the highest response occurring at 4 Hz and 5 Hz excitation for elastic and rigid car seats, respectively. Rigid car seat increased disc von Mises stress and risk factors by 7.6% and 11%, respectively, compared with elastic one. After 5 years from the age of 25, the peak risk factors for human-body exposure to vibration were 0.73 and 0.81 for elastic and rigid car seats, respectively and continued to increase with age. From age 45 onwards, the adverse effects of vibration on the lumbar spine will reach a risk level considered dangerous after 5 years.</p>","PeriodicalId":20666,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","volume":" ","pages":"501-514"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The adverse effects of car seats and vibration frequencies on different lumbar intervertebral discs in different age groups.\",\"authors\":\"KaiFeng Zhang, JingFang Zhang, RuiChun Dong, ShiFu Zheng, ChengZe Li, Qian Li\",\"doi\":\"10.1177/09544119251344365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prolonged whole-body vibration (WBV) may be one of the important factors contributing to low back pain. This study used a validated whole-body model and the WBV evaluation standard (ISO 2631-5:2018) to investigate the effects of car seat, frequency and age on the risk factors of the lumbar spine during prolonged exposure to WBV. The modal frequencies contributing more to the human resonance were first preliminarily predicted by modal analysis, and then sinusoidal excitations with frequencies of 1, 3, 5, 7, 9, 11 and 13 Hz were applied for transient analysis. On this basis, the adverse effects of long-term WBV on the lumbar spine were assessed based on the risk factors defined in the WBV evaluation standard (ISO 2631-5:2018). The transient analysis and risk factor calculation demonstrated that the responses exhibited a pronounced frequency dependence, with the highest response occurring at 4 Hz and 5 Hz excitation for elastic and rigid car seats, respectively. Rigid car seat increased disc von Mises stress and risk factors by 7.6% and 11%, respectively, compared with elastic one. After 5 years from the age of 25, the peak risk factors for human-body exposure to vibration were 0.73 and 0.81 for elastic and rigid car seats, respectively and continued to increase with age. From age 45 onwards, the adverse effects of vibration on the lumbar spine will reach a risk level considered dangerous after 5 years.</p>\",\"PeriodicalId\":20666,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"volume\":\" \",\"pages\":\"501-514\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544119251344365\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544119251344365","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

长时间的全身振动(WBV)可能是导致腰痛的重要因素之一。本研究采用经过验证的全身模型和WBV评估标准(ISO 2631-5:2018),研究汽车座椅、频率和年龄对长时间接触WBV时腰椎危险因素的影响。首先通过模态分析初步预测对人体共振贡献较大的模态频率,然后采用频率为1、3、5、7、9、11和13 Hz的正弦激励进行瞬态分析。在此基础上,根据WBV评价标准(ISO 2631-5:2018)中定义的危险因素,评估长期WBV对腰椎的不良影响。瞬态分析和风险因子计算表明,弹性和刚性汽车座椅的响应表现出明显的频率依赖性,分别在4 Hz和5 Hz激励下产生最高响应。刚性汽车座椅与弹性汽车座椅相比,分别增加了7.6%和11%的椎间盘应力和风险因子。25岁以后5年,弹性座椅和刚性座椅人体暴露于振动的危险因子峰值分别为0.73和0.81,且随年龄增长而继续增加。从45岁起,振动对腰椎的不良影响将在5年后达到危险水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The adverse effects of car seats and vibration frequencies on different lumbar intervertebral discs in different age groups.

The prolonged whole-body vibration (WBV) may be one of the important factors contributing to low back pain. This study used a validated whole-body model and the WBV evaluation standard (ISO 2631-5:2018) to investigate the effects of car seat, frequency and age on the risk factors of the lumbar spine during prolonged exposure to WBV. The modal frequencies contributing more to the human resonance were first preliminarily predicted by modal analysis, and then sinusoidal excitations with frequencies of 1, 3, 5, 7, 9, 11 and 13 Hz were applied for transient analysis. On this basis, the adverse effects of long-term WBV on the lumbar spine were assessed based on the risk factors defined in the WBV evaluation standard (ISO 2631-5:2018). The transient analysis and risk factor calculation demonstrated that the responses exhibited a pronounced frequency dependence, with the highest response occurring at 4 Hz and 5 Hz excitation for elastic and rigid car seats, respectively. Rigid car seat increased disc von Mises stress and risk factors by 7.6% and 11%, respectively, compared with elastic one. After 5 years from the age of 25, the peak risk factors for human-body exposure to vibration were 0.73 and 0.81 for elastic and rigid car seats, respectively and continued to increase with age. From age 45 onwards, the adverse effects of vibration on the lumbar spine will reach a risk level considered dangerous after 5 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
122
审稿时长
6 months
期刊介绍: The Journal of Engineering in Medicine is an interdisciplinary journal encompassing all aspects of engineering in medicine. The Journal is a vital tool for maintaining an understanding of the newest techniques and research in medical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信