{"title":"弱监督多实例主动学习用于齿纹舌识别。","authors":"Feilin Deng, Shangxuan Li, Zizhu Yang, Wu Zhou","doi":"10.3389/fphys.2025.1598850","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recognizing a tooth-marked tongue has important clinical diagnostic value in traditional Chinese medicine. Current deep learning methods for tooth mark detection require extensive manual labeling and tongue segmentation, which is labor-intensive. Therefore, we propose a weakly supervised multipleinstance active learning model for tooth-marked tongue recognition, aiming to eliminate preprocessing segmentation and reduce the annotation workload while maintaining diagnostic accuracy.</p><p><strong>Method: </strong>We propose a one-stage method tongenerate tooth mark instances that eliminates the need for pre-segmentation of the tongue. To make full use of unlabeled data, we introduce a semisupervised learning paradigm to pseudo-label unlabeled tongue images with high model confidence in active learning and incorporate them into the training set to improve the training efficiency of the active learning model. In addition, we propose an instance-level hybrid query method considering the diversity of tooth marks.</p><p><strong>Result: </strong>Experimental results on clinical tongue images verify the effectiveness of the proposed method, which achieves an accuracy of 93.88% for tooth-marked tongue recognition, outperforming the recently introduced weakly supervised approaches.</p><p><strong>Conclusion: </strong>The proposed method is effective with only a small amount of image-level annotation, and its performance is comparable to that of image-level annotation, instance-level annotation and pixel-level annotation, which require a large number of tooth markers. Our method significantly reduces the annotation cost of the binary classification task of traditional Chinese medicine tooth mark recognition.</p>","PeriodicalId":12477,"journal":{"name":"Frontiers in Physiology","volume":"16 ","pages":"1598850"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187592/pdf/","citationCount":"0","resultStr":"{\"title\":\"Weakly supervised multiple-instance active learning for tooth-marked tongue recognition.\",\"authors\":\"Feilin Deng, Shangxuan Li, Zizhu Yang, Wu Zhou\",\"doi\":\"10.3389/fphys.2025.1598850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Recognizing a tooth-marked tongue has important clinical diagnostic value in traditional Chinese medicine. Current deep learning methods for tooth mark detection require extensive manual labeling and tongue segmentation, which is labor-intensive. Therefore, we propose a weakly supervised multipleinstance active learning model for tooth-marked tongue recognition, aiming to eliminate preprocessing segmentation and reduce the annotation workload while maintaining diagnostic accuracy.</p><p><strong>Method: </strong>We propose a one-stage method tongenerate tooth mark instances that eliminates the need for pre-segmentation of the tongue. To make full use of unlabeled data, we introduce a semisupervised learning paradigm to pseudo-label unlabeled tongue images with high model confidence in active learning and incorporate them into the training set to improve the training efficiency of the active learning model. In addition, we propose an instance-level hybrid query method considering the diversity of tooth marks.</p><p><strong>Result: </strong>Experimental results on clinical tongue images verify the effectiveness of the proposed method, which achieves an accuracy of 93.88% for tooth-marked tongue recognition, outperforming the recently introduced weakly supervised approaches.</p><p><strong>Conclusion: </strong>The proposed method is effective with only a small amount of image-level annotation, and its performance is comparable to that of image-level annotation, instance-level annotation and pixel-level annotation, which require a large number of tooth markers. Our method significantly reduces the annotation cost of the binary classification task of traditional Chinese medicine tooth mark recognition.</p>\",\"PeriodicalId\":12477,\"journal\":{\"name\":\"Frontiers in Physiology\",\"volume\":\"16 \",\"pages\":\"1598850\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187592/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fphys.2025.1598850\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fphys.2025.1598850","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Weakly supervised multiple-instance active learning for tooth-marked tongue recognition.
Introduction: Recognizing a tooth-marked tongue has important clinical diagnostic value in traditional Chinese medicine. Current deep learning methods for tooth mark detection require extensive manual labeling and tongue segmentation, which is labor-intensive. Therefore, we propose a weakly supervised multipleinstance active learning model for tooth-marked tongue recognition, aiming to eliminate preprocessing segmentation and reduce the annotation workload while maintaining diagnostic accuracy.
Method: We propose a one-stage method tongenerate tooth mark instances that eliminates the need for pre-segmentation of the tongue. To make full use of unlabeled data, we introduce a semisupervised learning paradigm to pseudo-label unlabeled tongue images with high model confidence in active learning and incorporate them into the training set to improve the training efficiency of the active learning model. In addition, we propose an instance-level hybrid query method considering the diversity of tooth marks.
Result: Experimental results on clinical tongue images verify the effectiveness of the proposed method, which achieves an accuracy of 93.88% for tooth-marked tongue recognition, outperforming the recently introduced weakly supervised approaches.
Conclusion: The proposed method is effective with only a small amount of image-level annotation, and its performance is comparable to that of image-level annotation, instance-level annotation and pixel-level annotation, which require a large number of tooth markers. Our method significantly reduces the annotation cost of the binary classification task of traditional Chinese medicine tooth mark recognition.
期刊介绍:
Frontiers in Physiology is a leading journal in its field, publishing rigorously peer-reviewed research on the physiology of living systems, from the subcellular and molecular domains to the intact organism, and its interaction with the environment. Field Chief Editor George E. Billman at the Ohio State University Columbus is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.