{"title":"小麦胚芽部分代肉对牛肉汉堡营养品质的影响。","authors":"Omar Turki Mamdoh Ershidat, Mohamed Bassim Atta, Essam Mohamed Elsebaie, Mohamed Reda Badr","doi":"10.1177/10820132251353396","DOIUrl":null,"url":null,"abstract":"<p><p>The use of healthy ingredients in meat-based products is gaining popularity. The goal of this study was to use plant proteins to partially replace meat in beef burger compositions. In a lab, ground beef burgers were made with 4%, 9%, and 14% wheat germ flour. The final products' physical, chemical, and microbiological properties were determined. The obtained results indicated that as the amount of replacement with dehydrated wheat germ flour (DWGF) increased, the moisture and crude protein contents of fresh laboratory-made beef burgers decreased significantly. On the other hand, the level of ash and total carbohydrates increased. Also, the results showed that substituting beef with DWGF caused changes in the chemical properties (decreased total volatile nitrogen, trimethylamine, acid value, peroxide value, thiobarbituric value, and cholesterol content), color properties (increased <i>L</i>* while decreasing <i>a</i>* and <i>b</i>*), decreased textural properties, and cooking properties (increased water-holding capacity, water retention, fat retention, cooking yield while decreasing cooking loss) of the burger. Except for threonine and lysine, the majority of necessary amino acids in fresh laboratory-made beef burgers were steadily enhanced as the substitution level increased. For the control sample, the limiting amino acid was valine; for the beef burger using dehydrated wheat germ flour DWGF, the limiting amino acid was threonine. Even at a 9% substation level, the physical and organoleptic properties of a fresh laboratory-made beef burger containing DWGF were not changed fundamentally. As the substation level of DWGF increased, the number of microorganisms gradually reduced and the beef burger with 14% DWGF had the lowest bacterial load.</p>","PeriodicalId":12331,"journal":{"name":"Food Science and Technology International","volume":" ","pages":"10820132251353396"},"PeriodicalIF":1.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of wheat germ as a partial meat substitute on the nutritional and qualitative properties of beef burgers.\",\"authors\":\"Omar Turki Mamdoh Ershidat, Mohamed Bassim Atta, Essam Mohamed Elsebaie, Mohamed Reda Badr\",\"doi\":\"10.1177/10820132251353396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of healthy ingredients in meat-based products is gaining popularity. The goal of this study was to use plant proteins to partially replace meat in beef burger compositions. In a lab, ground beef burgers were made with 4%, 9%, and 14% wheat germ flour. The final products' physical, chemical, and microbiological properties were determined. The obtained results indicated that as the amount of replacement with dehydrated wheat germ flour (DWGF) increased, the moisture and crude protein contents of fresh laboratory-made beef burgers decreased significantly. On the other hand, the level of ash and total carbohydrates increased. Also, the results showed that substituting beef with DWGF caused changes in the chemical properties (decreased total volatile nitrogen, trimethylamine, acid value, peroxide value, thiobarbituric value, and cholesterol content), color properties (increased <i>L</i>* while decreasing <i>a</i>* and <i>b</i>*), decreased textural properties, and cooking properties (increased water-holding capacity, water retention, fat retention, cooking yield while decreasing cooking loss) of the burger. Except for threonine and lysine, the majority of necessary amino acids in fresh laboratory-made beef burgers were steadily enhanced as the substitution level increased. For the control sample, the limiting amino acid was valine; for the beef burger using dehydrated wheat germ flour DWGF, the limiting amino acid was threonine. Even at a 9% substation level, the physical and organoleptic properties of a fresh laboratory-made beef burger containing DWGF were not changed fundamentally. As the substation level of DWGF increased, the number of microorganisms gradually reduced and the beef burger with 14% DWGF had the lowest bacterial load.</p>\",\"PeriodicalId\":12331,\"journal\":{\"name\":\"Food Science and Technology International\",\"volume\":\" \",\"pages\":\"10820132251353396\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Technology International\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1177/10820132251353396\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Technology International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1177/10820132251353396","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Effect of wheat germ as a partial meat substitute on the nutritional and qualitative properties of beef burgers.
The use of healthy ingredients in meat-based products is gaining popularity. The goal of this study was to use plant proteins to partially replace meat in beef burger compositions. In a lab, ground beef burgers were made with 4%, 9%, and 14% wheat germ flour. The final products' physical, chemical, and microbiological properties were determined. The obtained results indicated that as the amount of replacement with dehydrated wheat germ flour (DWGF) increased, the moisture and crude protein contents of fresh laboratory-made beef burgers decreased significantly. On the other hand, the level of ash and total carbohydrates increased. Also, the results showed that substituting beef with DWGF caused changes in the chemical properties (decreased total volatile nitrogen, trimethylamine, acid value, peroxide value, thiobarbituric value, and cholesterol content), color properties (increased L* while decreasing a* and b*), decreased textural properties, and cooking properties (increased water-holding capacity, water retention, fat retention, cooking yield while decreasing cooking loss) of the burger. Except for threonine and lysine, the majority of necessary amino acids in fresh laboratory-made beef burgers were steadily enhanced as the substitution level increased. For the control sample, the limiting amino acid was valine; for the beef burger using dehydrated wheat germ flour DWGF, the limiting amino acid was threonine. Even at a 9% substation level, the physical and organoleptic properties of a fresh laboratory-made beef burger containing DWGF were not changed fundamentally. As the substation level of DWGF increased, the number of microorganisms gradually reduced and the beef burger with 14% DWGF had the lowest bacterial load.
期刊介绍:
Food Science and Technology International (FSTI) shares knowledge from leading researchers of food science and technology. Covers food processing and engineering, food safety and preservation, food biotechnology, and physical, chemical and sensory properties of foods. This journal is a member of the Committee on Publication Ethics (COPE).