Jan Schulze, Sarah Barnett, Liam Shaw, Anne Herrmann, Harish Poptani, Doris M Rassl, Alexander Haragan, Michael Shackcloth, Joseph J Sacco, Judy M Coulson
{"title":"生成胸膜间皮瘤的绒毛膜尿囊膜异种移植(CAM-PDX)模型的方法,并为癌症研究和药物筛选进行临床前成像。","authors":"Jan Schulze, Sarah Barnett, Liam Shaw, Anne Herrmann, Harish Poptani, Doris M Rassl, Alexander Haragan, Michael Shackcloth, Joseph J Sacco, Judy M Coulson","doi":"10.12688/f1000research.163596.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pleural mesothelioma is a cancer of the lung lining associated with asbestos exposure. Platinum/pemetrexed chemotherapy has been used for many years but provides little benefit and, despite recent immunotherapy advances, prognosis remains poor underpinning the need for development of novel therapeutics or drug repurposing. Fertilized hens' eggs provide a rapid and cost-effective alternative to murine models of pleural mesothelioma which are commonly used in preclinical studies, with chorioallantoic membrane (CAM) xenografts being a partial replacement for mouse flank xenografts. Here we describe methods to generate mesothelioma patient-derived xenografts on the CAM (CAM-PDX), and to subsequently assess these PDX nodules by preclinical imaging and histology.</p><p><strong>Methods: </strong>Fragments of surplus mesothelioma tissue obtained from patient biopsies were implanted onto the CAM on embryonic day 7 (E7), fresh or following cryopreservation, with the established PDX dissected on E14 and fixed for histological/immunohistochemical analysis. The optimal freezing method was determined by comparing tissue integrity and cellular content of cryopreserved tissue fragments with paired fresh samples via histological/immunohistochemical analyses. [ <sup>18</sup>F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was used to assess viability of PDXs <i>in ovo.</i></p><p><strong>Results: </strong>Methodologies for processing, cryopreservation, re-animation, and engraftment of mesothelioma tissue fragments were established. Cryopreservation of biopsy samples and parallel processing of contiguous sections allows for assessment of mesothelioma cellularity. CAM-PDXs, generated from fresh or slow-frozen tissue, were well vascularized whilst maintaining the architecture and cellular composition of the patient tissue. Furthermore, uptake of [ <sup>18</sup>F]-FDG following intravenous injection could be visualized and quantified.</p><p><strong>Conclusions: </strong>The CAM is a rapid platform for engrafting patient-derived tissue, maintaining elements of the tumor microenvironment and recapitulating heterogeneity observed in mesothelioma. Combining the CAM-PDX model and FDG-PET/CT provides a quantitative <i>in vivo</i> platform for pre-screening of novel treatment strategies and drug combinations, with the potential for development of patient tumor avatars for predicting clinical response.</p>","PeriodicalId":12260,"journal":{"name":"F1000Research","volume":"14 ","pages":"481"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methodology for generating chorioallantoic membrane patient-derived xenograft (CAM-PDX) models of pleural mesothelioma and performing preclinical imaging for the translation of cancer studies and drug screening.\",\"authors\":\"Jan Schulze, Sarah Barnett, Liam Shaw, Anne Herrmann, Harish Poptani, Doris M Rassl, Alexander Haragan, Michael Shackcloth, Joseph J Sacco, Judy M Coulson\",\"doi\":\"10.12688/f1000research.163596.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pleural mesothelioma is a cancer of the lung lining associated with asbestos exposure. Platinum/pemetrexed chemotherapy has been used for many years but provides little benefit and, despite recent immunotherapy advances, prognosis remains poor underpinning the need for development of novel therapeutics or drug repurposing. Fertilized hens' eggs provide a rapid and cost-effective alternative to murine models of pleural mesothelioma which are commonly used in preclinical studies, with chorioallantoic membrane (CAM) xenografts being a partial replacement for mouse flank xenografts. Here we describe methods to generate mesothelioma patient-derived xenografts on the CAM (CAM-PDX), and to subsequently assess these PDX nodules by preclinical imaging and histology.</p><p><strong>Methods: </strong>Fragments of surplus mesothelioma tissue obtained from patient biopsies were implanted onto the CAM on embryonic day 7 (E7), fresh or following cryopreservation, with the established PDX dissected on E14 and fixed for histological/immunohistochemical analysis. The optimal freezing method was determined by comparing tissue integrity and cellular content of cryopreserved tissue fragments with paired fresh samples via histological/immunohistochemical analyses. [ <sup>18</sup>F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was used to assess viability of PDXs <i>in ovo.</i></p><p><strong>Results: </strong>Methodologies for processing, cryopreservation, re-animation, and engraftment of mesothelioma tissue fragments were established. Cryopreservation of biopsy samples and parallel processing of contiguous sections allows for assessment of mesothelioma cellularity. CAM-PDXs, generated from fresh or slow-frozen tissue, were well vascularized whilst maintaining the architecture and cellular composition of the patient tissue. Furthermore, uptake of [ <sup>18</sup>F]-FDG following intravenous injection could be visualized and quantified.</p><p><strong>Conclusions: </strong>The CAM is a rapid platform for engrafting patient-derived tissue, maintaining elements of the tumor microenvironment and recapitulating heterogeneity observed in mesothelioma. Combining the CAM-PDX model and FDG-PET/CT provides a quantitative <i>in vivo</i> platform for pre-screening of novel treatment strategies and drug combinations, with the potential for development of patient tumor avatars for predicting clinical response.</p>\",\"PeriodicalId\":12260,\"journal\":{\"name\":\"F1000Research\",\"volume\":\"14 \",\"pages\":\"481\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12188182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"F1000Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12688/f1000research.163596.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"F1000Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/f1000research.163596.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Methodology for generating chorioallantoic membrane patient-derived xenograft (CAM-PDX) models of pleural mesothelioma and performing preclinical imaging for the translation of cancer studies and drug screening.
Background: Pleural mesothelioma is a cancer of the lung lining associated with asbestos exposure. Platinum/pemetrexed chemotherapy has been used for many years but provides little benefit and, despite recent immunotherapy advances, prognosis remains poor underpinning the need for development of novel therapeutics or drug repurposing. Fertilized hens' eggs provide a rapid and cost-effective alternative to murine models of pleural mesothelioma which are commonly used in preclinical studies, with chorioallantoic membrane (CAM) xenografts being a partial replacement for mouse flank xenografts. Here we describe methods to generate mesothelioma patient-derived xenografts on the CAM (CAM-PDX), and to subsequently assess these PDX nodules by preclinical imaging and histology.
Methods: Fragments of surplus mesothelioma tissue obtained from patient biopsies were implanted onto the CAM on embryonic day 7 (E7), fresh or following cryopreservation, with the established PDX dissected on E14 and fixed for histological/immunohistochemical analysis. The optimal freezing method was determined by comparing tissue integrity and cellular content of cryopreserved tissue fragments with paired fresh samples via histological/immunohistochemical analyses. [ 18F]-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) was used to assess viability of PDXs in ovo.
Results: Methodologies for processing, cryopreservation, re-animation, and engraftment of mesothelioma tissue fragments were established. Cryopreservation of biopsy samples and parallel processing of contiguous sections allows for assessment of mesothelioma cellularity. CAM-PDXs, generated from fresh or slow-frozen tissue, were well vascularized whilst maintaining the architecture and cellular composition of the patient tissue. Furthermore, uptake of [ 18F]-FDG following intravenous injection could be visualized and quantified.
Conclusions: The CAM is a rapid platform for engrafting patient-derived tissue, maintaining elements of the tumor microenvironment and recapitulating heterogeneity observed in mesothelioma. Combining the CAM-PDX model and FDG-PET/CT provides a quantitative in vivo platform for pre-screening of novel treatment strategies and drug combinations, with the potential for development of patient tumor avatars for predicting clinical response.
F1000ResearchPharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
5.00
自引率
0.00%
发文量
1646
审稿时长
1 weeks
期刊介绍:
F1000Research publishes articles and other research outputs reporting basic scientific, scholarly, translational and clinical research across the physical and life sciences, engineering, medicine, social sciences and humanities. F1000Research is a scholarly publication platform set up for the scientific, scholarly and medical research community; each article has at least one author who is a qualified researcher, scholar or clinician actively working in their speciality and who has made a key contribution to the article. Articles must be original (not duplications). All research is suitable irrespective of the perceived level of interest or novelty; we welcome confirmatory and negative results, as well as null studies. F1000Research publishes different type of research, including clinical trials, systematic reviews, software tools, method articles, and many others. Reviews and Opinion articles providing a balanced and comprehensive overview of the latest discoveries in a particular field, or presenting a personal perspective on recent developments, are also welcome. See the full list of article types we accept for more information.