{"title":"量子递推傅立叶采样中的相位坐标解算。","authors":"Christoffer Hindlycke, Niklas Johansson, Jan-Åke Larsson","doi":"10.3390/e27060596","DOIUrl":null,"url":null,"abstract":"<p><p>Recursive Fourier Sampling (RFS) was one of the earliest problems to demonstrate a quantum advantage, and is known to lie outside the Merlin-Arthur complexity class. This work contains a new description of quantum algorithms in phase space terminology, demonstrating its use in RFS, and how and why this gives a better understanding of the quantum advantage in RFS. Most importantly, describing the computational process of quantum computation in phase space terminology gives a much better understanding of why uncomputation is necessary when solving RFS: the advantage is present only when phase coordinate garbage is uncomputed. This is the underlying reason for the limitations of the quantum advantage.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192199/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phase Coordinate Uncomputation in Quantum Recursive Fourier Sampling.\",\"authors\":\"Christoffer Hindlycke, Niklas Johansson, Jan-Åke Larsson\",\"doi\":\"10.3390/e27060596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recursive Fourier Sampling (RFS) was one of the earliest problems to demonstrate a quantum advantage, and is known to lie outside the Merlin-Arthur complexity class. This work contains a new description of quantum algorithms in phase space terminology, demonstrating its use in RFS, and how and why this gives a better understanding of the quantum advantage in RFS. Most importantly, describing the computational process of quantum computation in phase space terminology gives a much better understanding of why uncomputation is necessary when solving RFS: the advantage is present only when phase coordinate garbage is uncomputed. This is the underlying reason for the limitations of the quantum advantage.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192199/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060596\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060596","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Phase Coordinate Uncomputation in Quantum Recursive Fourier Sampling.
Recursive Fourier Sampling (RFS) was one of the earliest problems to demonstrate a quantum advantage, and is known to lie outside the Merlin-Arthur complexity class. This work contains a new description of quantum algorithms in phase space terminology, demonstrating its use in RFS, and how and why this gives a better understanding of the quantum advantage in RFS. Most importantly, describing the computational process of quantum computation in phase space terminology gives a much better understanding of why uncomputation is necessary when solving RFS: the advantage is present only when phase coordinate garbage is uncomputed. This is the underlying reason for the limitations of the quantum advantage.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.