{"title":"水文学中的排列熵及其生态位研究进展","authors":"Dragutin T Mihailović","doi":"10.3390/e27060598","DOIUrl":null,"url":null,"abstract":"<p><p>One effective method for analyzing complexity involves applying information measures to time series derived from observational data. Permutation entropy (PE) is one such measure designed to quantify the degree of disorder or complexity within a time series by examining the order relations among its values. PE is distinguished by its simplicity, robustness, and exceptionally low computational cost, making it a benchmark tool for complexity analysis. This text reviews the advantages and limitations of PE while exploring its diverse applications in hydrology from 2002 to 2025. Specifically, it categorizes the uses of PE across various subfields, including runoff prediction, streamflow analysis, water level forecasting, assessment of hydrological changes, and evaluating the impact of infrastructure on hydrological systems. By leveraging PE's ability to capture the intricate dynamics of hydrological processes, researchers can enhance predictive models and improve our understanding of water-related phenomena.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192000/pdf/","citationCount":"0","resultStr":"{\"title\":\"Permutation Entropy and Its Niche in Hydrology: A Review.\",\"authors\":\"Dragutin T Mihailović\",\"doi\":\"10.3390/e27060598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One effective method for analyzing complexity involves applying information measures to time series derived from observational data. Permutation entropy (PE) is one such measure designed to quantify the degree of disorder or complexity within a time series by examining the order relations among its values. PE is distinguished by its simplicity, robustness, and exceptionally low computational cost, making it a benchmark tool for complexity analysis. This text reviews the advantages and limitations of PE while exploring its diverse applications in hydrology from 2002 to 2025. Specifically, it categorizes the uses of PE across various subfields, including runoff prediction, streamflow analysis, water level forecasting, assessment of hydrological changes, and evaluating the impact of infrastructure on hydrological systems. By leveraging PE's ability to capture the intricate dynamics of hydrological processes, researchers can enhance predictive models and improve our understanding of water-related phenomena.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192000/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060598\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060598","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Permutation Entropy and Its Niche in Hydrology: A Review.
One effective method for analyzing complexity involves applying information measures to time series derived from observational data. Permutation entropy (PE) is one such measure designed to quantify the degree of disorder or complexity within a time series by examining the order relations among its values. PE is distinguished by its simplicity, robustness, and exceptionally low computational cost, making it a benchmark tool for complexity analysis. This text reviews the advantages and limitations of PE while exploring its diverse applications in hydrology from 2002 to 2025. Specifically, it categorizes the uses of PE across various subfields, including runoff prediction, streamflow analysis, water level forecasting, assessment of hydrological changes, and evaluating the impact of infrastructure on hydrological systems. By leveraging PE's ability to capture the intricate dynamics of hydrological processes, researchers can enhance predictive models and improve our understanding of water-related phenomena.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.