多重分形过程在复杂系统动力学中的同步。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-06-17 DOI:10.3390/e27060647
Vlad Ghizdovat, Diana Carmen Mirila, Florin Nedeff, Dragos Ioan Rusu, Oana Rusu, Maricel Agop, Decebal Vasincu
{"title":"多重分形过程在复杂系统动力学中的同步。","authors":"Vlad Ghizdovat, Diana Carmen Mirila, Florin Nedeff, Dragos Ioan Rusu, Oana Rusu, Maricel Agop, Decebal Vasincu","doi":"10.3390/e27060647","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of complex systems often exhibit multifractal properties, where interactions across different scales influence their evolution. In this study, we apply the Multifractal Theory of Motion within the framework of scale relativity theory to explore synchronization phenomena in complex systems. We demonstrate that the motion of such systems can be described by multifractal Schrödinger-type equations, offering a new perspective on the interplay between deterministic and stochastic behaviors. Our analysis reveals that synchronization in complex systems emerges from the balance of multifractal acceleration, convection, and dissipation, leading to structured yet highly adaptive behavior across scales. The results highlight the potential of multifractal analysis in predicting and controlling synchronized dynamics in real-world applications. Several applications are also discussed.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191558/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synchronizations in Complex Systems Dynamics Through a Multifractal Procedure.\",\"authors\":\"Vlad Ghizdovat, Diana Carmen Mirila, Florin Nedeff, Dragos Ioan Rusu, Oana Rusu, Maricel Agop, Decebal Vasincu\",\"doi\":\"10.3390/e27060647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamics of complex systems often exhibit multifractal properties, where interactions across different scales influence their evolution. In this study, we apply the Multifractal Theory of Motion within the framework of scale relativity theory to explore synchronization phenomena in complex systems. We demonstrate that the motion of such systems can be described by multifractal Schrödinger-type equations, offering a new perspective on the interplay between deterministic and stochastic behaviors. Our analysis reveals that synchronization in complex systems emerges from the balance of multifractal acceleration, convection, and dissipation, leading to structured yet highly adaptive behavior across scales. The results highlight the potential of multifractal analysis in predicting and controlling synchronized dynamics in real-world applications. Several applications are also discussed.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191558/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060647\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060647","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

复杂系统的动力学通常表现出多重分形特性,其中不同尺度的相互作用影响其演化。在这项研究中,我们应用尺度相对论框架下的多重分形运动理论来探讨复杂系统中的同步现象。我们证明了这种系统的运动可以用多重分形Schrödinger-type方程来描述,为确定性和随机行为之间的相互作用提供了一个新的视角。我们的分析表明,复杂系统中的同步来自多重分形加速、对流和耗散的平衡,从而导致跨尺度的结构化但高度自适应行为。结果突出了多重分形分析在实际应用中预测和控制同步动力学方面的潜力。本文还讨论了几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronizations in Complex Systems Dynamics Through a Multifractal Procedure.

The dynamics of complex systems often exhibit multifractal properties, where interactions across different scales influence their evolution. In this study, we apply the Multifractal Theory of Motion within the framework of scale relativity theory to explore synchronization phenomena in complex systems. We demonstrate that the motion of such systems can be described by multifractal Schrödinger-type equations, offering a new perspective on the interplay between deterministic and stochastic behaviors. Our analysis reveals that synchronization in complex systems emerges from the balance of multifractal acceleration, convection, and dissipation, leading to structured yet highly adaptive behavior across scales. The results highlight the potential of multifractal analysis in predicting and controlling synchronized dynamics in real-world applications. Several applications are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信