基于重要性感知的MIMO语义通信资源分配。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-06-05 DOI:10.3390/e27060605
Yue Cao, Youlong Wu, Lixiang Lian, Meixia Tao
{"title":"基于重要性感知的MIMO语义通信资源分配。","authors":"Yue Cao, Youlong Wu, Lixiang Lian, Meixia Tao","doi":"10.3390/e27060605","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a separate source-channel coding (SSCC) framework to address semantic communication challenges in MIMO systems, overcoming the limitations of joint source-channel coding (JSCC) in channel adaptation and model reusability. Traditional systems suffer from bit-level redundancy in 6G, while JSCC struggles with complex channel variations. Our solution decouples semantic processing from channel coding through a three-tier architecture: (1) Variational autoencoder (VAE)-based semantic encoder and decoder for source coding, (2) A communication-informed bottleneck attribution (CIBA) mechanism quantifying feature importance for learning tasks, and (3) An importance-aware resource allocation scheme aligning communication objectives with deep learning tasks. Systematic experiments validate CIBA's effectiveness in deriving importance scores that bridge learning tasks and communication optimization. Comparisons of feature perturbation schemes confirm the necessity of importance-aware resource allocation, with the proposed allocation strategy outperforming conventional methods in task performance metrics. The SSCC design enhances model reusability while maintaining adaptability to diverse MIMO configurations. By integrating interpretable AI with resource management, this work establishes a foundation for SSCC semantic communication systems in resource-constrained environments, prioritizing semantic fidelity and task efficacy over bit-level redundancy. The methodology highlights the critical role of importance awareness in optimizing both communication efficiency and learning task performance.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191451/pdf/","citationCount":"0","resultStr":"{\"title\":\"Importance-Aware Resource Allocations for MIMO Semantic Communication.\",\"authors\":\"Yue Cao, Youlong Wu, Lixiang Lian, Meixia Tao\",\"doi\":\"10.3390/e27060605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a separate source-channel coding (SSCC) framework to address semantic communication challenges in MIMO systems, overcoming the limitations of joint source-channel coding (JSCC) in channel adaptation and model reusability. Traditional systems suffer from bit-level redundancy in 6G, while JSCC struggles with complex channel variations. Our solution decouples semantic processing from channel coding through a three-tier architecture: (1) Variational autoencoder (VAE)-based semantic encoder and decoder for source coding, (2) A communication-informed bottleneck attribution (CIBA) mechanism quantifying feature importance for learning tasks, and (3) An importance-aware resource allocation scheme aligning communication objectives with deep learning tasks. Systematic experiments validate CIBA's effectiveness in deriving importance scores that bridge learning tasks and communication optimization. Comparisons of feature perturbation schemes confirm the necessity of importance-aware resource allocation, with the proposed allocation strategy outperforming conventional methods in task performance metrics. The SSCC design enhances model reusability while maintaining adaptability to diverse MIMO configurations. By integrating interpretable AI with resource management, this work establishes a foundation for SSCC semantic communication systems in resource-constrained environments, prioritizing semantic fidelity and task efficacy over bit-level redundancy. The methodology highlights the critical role of importance awareness in optimizing both communication efficiency and learning task performance.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191451/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060605\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种独立的源信道编码(SSCC)框架来解决MIMO系统中的语义通信挑战,克服了联合源信道编码(JSCC)在信道自适应和模型可重用性方面的局限性。传统系统在6G中遭受位级冗余的困扰,而JSCC则在复杂的信道变化中挣扎。我们的解决方案通过三层架构将语义处理与信道编码解耦:(1)基于变分自编码器(VAE)的源编码语义编码器和解码器,(2)通信通知瓶颈归属(CIBA)机制,量化学习任务的特征重要性,(3)将通信目标与深度学习任务结合起来的重要性感知资源分配方案。系统实验验证了CIBA在获得桥梁学习任务和沟通优化的重要性分数方面的有效性。特征扰动方案的比较证实了重要性感知资源分配的必要性,提出的分配策略在任务性能指标上优于传统方法。SSCC设计增强了模型的可重用性,同时保持了对各种MIMO配置的适应性。通过将可解释人工智能与资源管理相结合,本工作为资源受限环境下的SSCC语义通信系统奠定了基础,优先考虑语义保真度和任务效率,而不是位级冗余。该方法强调了重要性意识在优化沟通效率和学习任务绩效方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Importance-Aware Resource Allocations for MIMO Semantic Communication.

This study proposes a separate source-channel coding (SSCC) framework to address semantic communication challenges in MIMO systems, overcoming the limitations of joint source-channel coding (JSCC) in channel adaptation and model reusability. Traditional systems suffer from bit-level redundancy in 6G, while JSCC struggles with complex channel variations. Our solution decouples semantic processing from channel coding through a three-tier architecture: (1) Variational autoencoder (VAE)-based semantic encoder and decoder for source coding, (2) A communication-informed bottleneck attribution (CIBA) mechanism quantifying feature importance for learning tasks, and (3) An importance-aware resource allocation scheme aligning communication objectives with deep learning tasks. Systematic experiments validate CIBA's effectiveness in deriving importance scores that bridge learning tasks and communication optimization. Comparisons of feature perturbation schemes confirm the necessity of importance-aware resource allocation, with the proposed allocation strategy outperforming conventional methods in task performance metrics. The SSCC design enhances model reusability while maintaining adaptability to diverse MIMO configurations. By integrating interpretable AI with resource management, this work establishes a foundation for SSCC semantic communication systems in resource-constrained environments, prioritizing semantic fidelity and task efficacy over bit-level redundancy. The methodology highlights the critical role of importance awareness in optimizing both communication efficiency and learning task performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信