{"title":"循环信息流建模的广义无序泛函。","authors":"Masoud Ataei, Xiaogang Wang","doi":"10.3390/e27060608","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalized Derangetropy Functionals for Modeling Cyclical Information Flow.\",\"authors\":\"Masoud Ataei, Xiaogang Wang\",\"doi\":\"10.3390/e27060608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060608\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060608","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Generalized Derangetropy Functionals for Modeling Cyclical Information Flow.
This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.