循环信息流建模的广义无序泛函。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-06-07 DOI:10.3390/e27060608
Masoud Ataei, Xiaogang Wang
{"title":"循环信息流建模的广义无序泛函。","authors":"Masoud Ataei, Xiaogang Wang","doi":"10.3390/e27060608","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generalized Derangetropy Functionals for Modeling Cyclical Information Flow.\",\"authors\":\"Masoud Ataei, Xiaogang Wang\",\"doi\":\"10.3390/e27060608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060608\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060608","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用广义无序算子族对循环和反馈驱动信息流进行建模的功能框架。与Shannon熵等标量熵度量相反,这些算子直接作用于概率密度,在分布的支持下提供信息的地形表示。提出的框架通过非线性微分方程控制的函数变换捕获周期性和自引用的信息演变方面。当递归应用时,这些算符诱导由热方程控制的光谱扩散过程,收敛于高斯特征函数。这一收敛结果为描述循环调制下信息的长期动态特性奠定了分析基础。因此,该框架为分析以周期结构、随机反馈和延迟相互作用为特征的系统中的信息时间演化提供了新的工具,在人工神经网络、通信理论和非平衡统计力学中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Derangetropy Functionals for Modeling Cyclical Information Flow.

This paper introduces a functional framework for modeling cyclical and feedback-driven information flow using a generalized family of derangetropy operators. In contrast to scalar entropy measures such as Shannon entropy, these operators act directly on probability densities, providing a topographical representation of information across the support of the distribution. The proposed framework captures periodic and self-referential aspects of information evolution through functional transformations governed by nonlinear differential equations. When applied recursively, these operators induce a spectral diffusion process governed by the heat equation, with convergence toward a Gaussian characteristic function. This convergence result establishes an analytical foundation for describing the long-term dynamics of information under cyclic modulation. The framework thus offers new tools for analyzing the temporal evolution of information in systems characterized by periodic structure, stochastic feedback, and delayed interaction, with potential applications in artificial neural networks, communication theory, and non-equilibrium statistical mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信