{"title":"一种基于信息几何的雷达距离-方位测量前跟踪算法。","authors":"Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua, Yongqiang Cheng","doi":"10.3390/e27060637","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191875/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Information Geometry-Based Track-Before-Detect Algorithm for Range-Azimuth Measurements in Radar Systems.\",\"authors\":\"Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua, Yongqiang Cheng\",\"doi\":\"10.3390/e27060637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060637\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060637","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
An Information Geometry-Based Track-Before-Detect Algorithm for Range-Azimuth Measurements in Radar Systems.
The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.