一种基于信息几何的雷达距离-方位测量前跟踪算法。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-06-14 DOI:10.3390/e27060637
Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua, Yongqiang Cheng
{"title":"一种基于信息几何的雷达距离-方位测量前跟踪算法。","authors":"Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua, Yongqiang Cheng","doi":"10.3390/e27060637","DOIUrl":null,"url":null,"abstract":"<p><p>The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191875/pdf/","citationCount":"0","resultStr":"{\"title\":\"An Information Geometry-Based Track-Before-Detect Algorithm for Range-Azimuth Measurements in Radar Systems.\",\"authors\":\"Jinguo Liu, Hao Wu, Zheng Yang, Xiaoqiang Hua, Yongqiang Cheng\",\"doi\":\"10.3390/e27060637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060637\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060637","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在非均匀杂波背景下弱小运动目标的检测是雷达系统面临的一个重大挑战。本文提出了一种基于信息几何(IG)理论的检测前跟踪(track-before-detect, TBD)方法,并将其应用于距离-方位测量,通过帧间信息集成将IG检测器扩展到多帧检测。该方法利用了信息几何检测框架在强杂乱场景中的独特优势,同时增强了TBD方法中跨多个框架的信息集成。具体地说,在多帧距离-方位测量中,目标和杂波轨迹采用厄米正定(HPD)和功率谱(PS)流形建模。然后设计了一个基于信息几何的评分函数,该函数使用Kullback-Leibler (KL)散度作为几何度量来评估这些运动轨迹。此外,本研究设计了一个采用状态转换约束的动态规划(DP)的解决方案框架,最终形成一个集成的价值函数。该算法通过最大化综合价值函数来识别目标轨迹。使用实际记录的海杂波数据集进行的实验验证显示了该算法的有效性,与传统方法相比,该算法的信杂波比(SCR)至少提高了3db。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Information Geometry-Based Track-Before-Detect Algorithm for Range-Azimuth Measurements in Radar Systems.

The detection of weak moving targets in heterogeneous clutter backgrounds is a significant challenge in radar systems. In this paper, we propose a track-before-detect (TBD) method based on information geometry (IG) theory applied to range-azimuth measurements, which extends the IG detectors to multi-frame detection through inter-frame information integration. The approach capitalizes on the distinctive benefits of the information geometry detection framework in scenarios with strong clutter, while enhancing the integration of information across multiple frames within the TBD approach. Specifically, target and clutter trajectories in multi-frame range-azimuth measurements are modeled on the Hermitian positive definite (HPD) and power spectrum (PS) manifolds. A scoring function based on information geometry, which uses Kullback-Leibler (KL) divergence as a geometric metric, is then devised to assess these motion trajectories. Moreover, this study devises a solution framework employing dynamic programming (DP) with constraints on state transitions, culminating in an integrated merit function. This algorithm identifies target trajectories by maximizing the integrated merit function. Experimental validation using real-recorded sea clutter datasets showcases the effectiveness of the proposed algorithm, yielding a minimum 3 dB enhancement in signal-to-clutter ratio (SCR) compared to traditional approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信