{"title":"多载波无线传感网络信息最小化时代。","authors":"Juan Sun, Jingjie Xia, Shubin Zhang, Xinjie Yu","doi":"10.3390/e27060603","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the challenge of ensuring timely information delivery in wireless powered sensor networks (WPSNs), where multiple sensors forward status-update packets to a base station (BS). Time is partitioned to multiple time blocks, with each time block dedicated to either data packet transmission or energy transfer. Our objective is to minimize the long-term average weighted sum of the Age of Information (WAoI) for physical processes monitored by sensors. We formulate this optimization problem as a multi-stage stochastic optimization program. To tackle this intricate problem, we propose a novel approach that leverages Lyapunov optimization to transform the complex original problem into a sequence of per-time-bock deterministic problems. These deterministic problems are then solved using model-free deep reinforcement learning (DRL). Simulation results demonstrate that our proposed algorithm achieves significantly lower WAoI compared to the DQN, AoI-based greedy, and energy-based greedy algorithms. Furthermore, our method effectively mitigates the issue of excessive instantaneous AoI experienced by individual sensors compared to the DQN.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Age of Information Minimization in Multicarrier-Based Wireless Powered Sensor Networks.\",\"authors\":\"Juan Sun, Jingjie Xia, Shubin Zhang, Xinjie Yu\",\"doi\":\"10.3390/e27060603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the challenge of ensuring timely information delivery in wireless powered sensor networks (WPSNs), where multiple sensors forward status-update packets to a base station (BS). Time is partitioned to multiple time blocks, with each time block dedicated to either data packet transmission or energy transfer. Our objective is to minimize the long-term average weighted sum of the Age of Information (WAoI) for physical processes monitored by sensors. We formulate this optimization problem as a multi-stage stochastic optimization program. To tackle this intricate problem, we propose a novel approach that leverages Lyapunov optimization to transform the complex original problem into a sequence of per-time-bock deterministic problems. These deterministic problems are then solved using model-free deep reinforcement learning (DRL). Simulation results demonstrate that our proposed algorithm achieves significantly lower WAoI compared to the DQN, AoI-based greedy, and energy-based greedy algorithms. Furthermore, our method effectively mitigates the issue of excessive instantaneous AoI experienced by individual sensors compared to the DQN.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27060603\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060603","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Age of Information Minimization in Multicarrier-Based Wireless Powered Sensor Networks.
This study investigates the challenge of ensuring timely information delivery in wireless powered sensor networks (WPSNs), where multiple sensors forward status-update packets to a base station (BS). Time is partitioned to multiple time blocks, with each time block dedicated to either data packet transmission or energy transfer. Our objective is to minimize the long-term average weighted sum of the Age of Information (WAoI) for physical processes monitored by sensors. We formulate this optimization problem as a multi-stage stochastic optimization program. To tackle this intricate problem, we propose a novel approach that leverages Lyapunov optimization to transform the complex original problem into a sequence of per-time-bock deterministic problems. These deterministic problems are then solved using model-free deep reinforcement learning (DRL). Simulation results demonstrate that our proposed algorithm achieves significantly lower WAoI compared to the DQN, AoI-based greedy, and energy-based greedy algorithms. Furthermore, our method effectively mitigates the issue of excessive instantaneous AoI experienced by individual sensors compared to the DQN.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.