{"title":"ViSwNeXtNet基于深度补丁的视觉变压器和ConvNeXt集成,用于稳健的二值组织病理学分类。","authors":"Özgen Arslan Solmaz, Burak Tasci","doi":"10.3390/diagnostics15121507","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, offer promising tools for improving diagnostic accuracy. <b>Methods:</b> We propose ViSwNeXtNet, a novel patch-wise ensemble framework that integrates three transformer-based architectures-ConvNeXt-Tiny, Swin-Tiny, and ViT-Base-for deep feature extraction. Features from each model (12,288 per model) were concatenated into a 36,864-dimensional vector and refined using iterative neighborhood component analysis (INCA) to select the most discriminative 565 features. A quadratic SVM classifier was trained using these selected features. The model was evaluated on two datasets: (1) a custom-collected dataset consisting of 516 intestinal metaplasia cases and 521 control cases, and (2) the public GasHisSDB dataset, which includes 20,160 normal and 13,124 abnormal H&E-stained image patches of size 160 × 160 pixels. <b>Results:</b> On the collected dataset, the proposed method achieved 94.41% accuracy, 94.63% sensitivity, and 94.40% F1 score. On the GasHisSDB dataset, it reached 99.20% accuracy, 99.39% sensitivity, and 99.16% F1 score, outperforming individual backbone models and demonstrating strong generalizability across datasets. <b>Conclusions:</b> ViSwNeXtNet successfully combines local, regional, and global representations of tissue structure through an ensemble of transformer-based models. The addition of INCA-based feature selection significantly enhances classification performance while reducing dimensionality. These findings suggest the method's potential for integration into clinical pathology workflows. Future work will focus on multiclass classification, multicenter validation, and integration of explainable AI techniques.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192024/pdf/","citationCount":"0","resultStr":"{\"title\":\"ViSwNeXtNet Deep Patch-Wise Ensemble of Vision Transformers and ConvNeXt for Robust Binary Histopathology Classification.\",\"authors\":\"Özgen Arslan Solmaz, Burak Tasci\",\"doi\":\"10.3390/diagnostics15121507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, offer promising tools for improving diagnostic accuracy. <b>Methods:</b> We propose ViSwNeXtNet, a novel patch-wise ensemble framework that integrates three transformer-based architectures-ConvNeXt-Tiny, Swin-Tiny, and ViT-Base-for deep feature extraction. Features from each model (12,288 per model) were concatenated into a 36,864-dimensional vector and refined using iterative neighborhood component analysis (INCA) to select the most discriminative 565 features. A quadratic SVM classifier was trained using these selected features. The model was evaluated on two datasets: (1) a custom-collected dataset consisting of 516 intestinal metaplasia cases and 521 control cases, and (2) the public GasHisSDB dataset, which includes 20,160 normal and 13,124 abnormal H&E-stained image patches of size 160 × 160 pixels. <b>Results:</b> On the collected dataset, the proposed method achieved 94.41% accuracy, 94.63% sensitivity, and 94.40% F1 score. On the GasHisSDB dataset, it reached 99.20% accuracy, 99.39% sensitivity, and 99.16% F1 score, outperforming individual backbone models and demonstrating strong generalizability across datasets. <b>Conclusions:</b> ViSwNeXtNet successfully combines local, regional, and global representations of tissue structure through an ensemble of transformer-based models. The addition of INCA-based feature selection significantly enhances classification performance while reducing dimensionality. These findings suggest the method's potential for integration into clinical pathology workflows. Future work will focus on multiclass classification, multicenter validation, and integration of explainable AI techniques.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192024/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15121507\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
ViSwNeXtNet Deep Patch-Wise Ensemble of Vision Transformers and ConvNeXt for Robust Binary Histopathology Classification.
Background: Intestinal metaplasia (IM) is a precancerous gastric condition that requires accurate histopathological diagnosis to enable early intervention and cancer prevention. Traditional evaluation of H&E-stained tissue slides can be labor-intensive and prone to interobserver variability. Recent advances in deep learning, particularly transformer-based models, offer promising tools for improving diagnostic accuracy. Methods: We propose ViSwNeXtNet, a novel patch-wise ensemble framework that integrates three transformer-based architectures-ConvNeXt-Tiny, Swin-Tiny, and ViT-Base-for deep feature extraction. Features from each model (12,288 per model) were concatenated into a 36,864-dimensional vector and refined using iterative neighborhood component analysis (INCA) to select the most discriminative 565 features. A quadratic SVM classifier was trained using these selected features. The model was evaluated on two datasets: (1) a custom-collected dataset consisting of 516 intestinal metaplasia cases and 521 control cases, and (2) the public GasHisSDB dataset, which includes 20,160 normal and 13,124 abnormal H&E-stained image patches of size 160 × 160 pixels. Results: On the collected dataset, the proposed method achieved 94.41% accuracy, 94.63% sensitivity, and 94.40% F1 score. On the GasHisSDB dataset, it reached 99.20% accuracy, 99.39% sensitivity, and 99.16% F1 score, outperforming individual backbone models and demonstrating strong generalizability across datasets. Conclusions: ViSwNeXtNet successfully combines local, regional, and global representations of tissue structure through an ensemble of transformer-based models. The addition of INCA-based feature selection significantly enhances classification performance while reducing dimensionality. These findings suggest the method's potential for integration into clinical pathology workflows. Future work will focus on multiclass classification, multicenter validation, and integration of explainable AI techniques.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.