{"title":"声音定位训练与诱导大脑可塑性:fMRI研究。","authors":"Ranjita Kumari, Sukhan Lee, Pradeep Kumar Anand, Jitae Shin","doi":"10.3390/diagnostics15121558","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain activity. Our objective was to investigate the effects of sound localization training on brain activity and identify brain regions exhibiting significant changes in activation pre- and post-training to understand how sound localization training induces plasticity in the brain. <b>Method</b>: Six blindfolded participants each underwent 30-minute sound localization training sessions twice a week for three weeks. All participants completed functional MRI (fMRI) testing before and after the training. <b>Results:</b> fMRI scans revealed that sound localization training led to increased activation in several cortical areas, including the superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, parietal lobule, precentral gyrus, and postcentral gyrus. These regions are associated with cognitive processes such as auditory processing, spatial working memory, planning, decision-making, error detection, and motor control. Conversely, a decrease in activation was observed in the left middle temporal gyrus, a region linked to language comprehension and semantic memory. <b>Conclusions:</b> These findings suggest that sound localization training enhances neural activity in areas involved in higher-order cognitive functions, spatial attention, and motor execution, while potentially reducing reliance on regions involved in basic sensory processing. This study provides evidence of training-induced neuroplasticity, highlighting the brain's capacity to adapt through targeted auditory training intervention.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191560/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sound Localization Training and Induced Brain Plasticity: An fMRI Investigation.\",\"authors\":\"Ranjita Kumari, Sukhan Lee, Pradeep Kumar Anand, Jitae Shin\",\"doi\":\"10.3390/diagnostics15121558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain activity. Our objective was to investigate the effects of sound localization training on brain activity and identify brain regions exhibiting significant changes in activation pre- and post-training to understand how sound localization training induces plasticity in the brain. <b>Method</b>: Six blindfolded participants each underwent 30-minute sound localization training sessions twice a week for three weeks. All participants completed functional MRI (fMRI) testing before and after the training. <b>Results:</b> fMRI scans revealed that sound localization training led to increased activation in several cortical areas, including the superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, parietal lobule, precentral gyrus, and postcentral gyrus. These regions are associated with cognitive processes such as auditory processing, spatial working memory, planning, decision-making, error detection, and motor control. Conversely, a decrease in activation was observed in the left middle temporal gyrus, a region linked to language comprehension and semantic memory. <b>Conclusions:</b> These findings suggest that sound localization training enhances neural activity in areas involved in higher-order cognitive functions, spatial attention, and motor execution, while potentially reducing reliance on regions involved in basic sensory processing. This study provides evidence of training-induced neuroplasticity, highlighting the brain's capacity to adapt through targeted auditory training intervention.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191560/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15121558\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121558","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Sound Localization Training and Induced Brain Plasticity: An fMRI Investigation.
Background/Objectives: Neuroimaging techniques have been increasingly utilized to explore neuroplasticity induced by various training regimens. Magnetic resonance imaging (MRI) enables to study these changes non-invasively. While visual and motor training have been widely studied, less is known about how auditory training affects brain activity. Our objective was to investigate the effects of sound localization training on brain activity and identify brain regions exhibiting significant changes in activation pre- and post-training to understand how sound localization training induces plasticity in the brain. Method: Six blindfolded participants each underwent 30-minute sound localization training sessions twice a week for three weeks. All participants completed functional MRI (fMRI) testing before and after the training. Results: fMRI scans revealed that sound localization training led to increased activation in several cortical areas, including the superior frontal gyrus, superior temporal gyrus, middle temporal gyrus, parietal lobule, precentral gyrus, and postcentral gyrus. These regions are associated with cognitive processes such as auditory processing, spatial working memory, planning, decision-making, error detection, and motor control. Conversely, a decrease in activation was observed in the left middle temporal gyrus, a region linked to language comprehension and semantic memory. Conclusions: These findings suggest that sound localization training enhances neural activity in areas involved in higher-order cognitive functions, spatial attention, and motor execution, while potentially reducing reliance on regions involved in basic sensory processing. This study provides evidence of training-induced neuroplasticity, highlighting the brain's capacity to adapt through targeted auditory training intervention.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.