Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser, Christer Ruff
{"title":"标准和低剂量非增强头部CT的钦佩、SAFIRE和滤波后投影比较。","authors":"Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser, Christer Ruff","doi":"10.3390/diagnostics15121541","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques-Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)-in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). <b>Methods</b>: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. <b>Results</b>: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (<i>p</i> < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51-1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all <i>p</i> < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (<i>p</i> < 0.001), while SAFIRE achieved slightly higher image contrast scores (<i>p</i> < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (<i>p</i> < 0.01). <b>Conclusions</b>: Both IR techniques-ADMIRE and SAFIRE-achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT.\",\"authors\":\"Georg Gohla, Anja Örgel, Uwe Klose, Andreas Brendlin, Malte Niklas Bongers, Benjamin Bender, Deborah Staber, Ulrike Ernemann, Till-Karsten Hauser, Christer Ruff\",\"doi\":\"10.3390/diagnostics15121541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques-Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)-in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). <b>Methods</b>: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. <b>Results</b>: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (<i>p</i> < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51-1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all <i>p</i> < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (<i>p</i> < 0.001), while SAFIRE achieved slightly higher image contrast scores (<i>p</i> < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (<i>p</i> < 0.01). <b>Conclusions</b>: Both IR techniques-ADMIRE and SAFIRE-achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15121541\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121541","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Comparison of ADMIRE, SAFIRE, and Filtered Back Projection in Standard and Low-Dose Non-Enhanced Head CT.
Background/Objectives: Iterative reconstruction (IR) techniques were developed to address the shortcomings of filtered back projection (FBP), yet research comparing different types of IR is still missing. This work investigates how reducing radiation dose influences both image quality and noise profiles when using two iterative reconstruction techniques-Sinogram-Affirmed Iterative Reconstruction (SAFIRE) and Advanced Modeled Iterative Reconstruction (ADMIRE)-in comparison to filtered back projection (FBP) in non-enhanced head CT (NECT). Methods: In this retrospective single-center study, 21 consecutive patients underwent standard NECT on a 128-slice CT scanner. Raw data simulated dose reductions to 90% and 70% of the original dose via ReconCT software. For each dose level, images were reconstructed with FBP, SAFIRE 3, and ADMIRE 3. Image noise power spectra quantified objective image noise. Two blinded neuroradiologists scored overall image quality, image noise, image contrast, detail, and artifacts on a 10-point Likert scale in a consensus reading. Quantitative Hounsfield unit (HU) measurements were obtained in white and gray matter regions. Statistical analyses included the Wilcoxon signed-rank test, mixed-effects modeling, ANOVA, and post hoc pairwise comparisons with Bonferroni correction. Results: Both iterative reconstructions significantly reduced image noise compared to FBP across all dose levels (p < 0.001). ADMIRE exhibited superior image noise suppression at low (<0.51 1/mm) and high (>1.31 1/mm) spatial frequencies, whereas SAFIRE performed better in the mid-frequency range (0.51-1.31 1/mm). Subjective scores for overall quality, image noise, image contrast, and detail were higher for ADMIRE and SAFIRE versus FBP at the original dose and simulated doses of 90% and 70% (all p < 0.001). ADMIRE outperformed SAFIRE in artifact reduction (p < 0.001), while SAFIRE achieved slightly higher image contrast scores (p < 0.001). Objective HU values remained stable across reconstruction methods, although SAFIRE yielded marginally higher gray and white matter (WM) attenuations (p < 0.01). Conclusions: Both IR techniques-ADMIRE and SAFIRE-achieved substantial noise reduction and improved image quality relative to FBP in non-enhanced head CT at standard and reduced dose levels on the specific CT system and reconstruction strength tested. ADMIRE showed enhanced suppression of low- and high-frequency image noise and fewer artifacts, while SAFIRE preserved image contrast and reduced mid-frequency noise. These findings support the potential of iterative reconstruction to optimize radiation dose in NECT protocols in line with the ALARA principle, although broader validation in multi-vendor, multi-center settings is warranted.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.