{"title":"定量脑电图作为痴呆生物标志物的时频域分析。","authors":"Chanda Simfukwe, Seong Soo A An, Young Chul Youn","doi":"10.3390/diagnostics15121509","DOIUrl":null,"url":null,"abstract":"<p><p>Biomarkers currently used to diagnose dementia, including Alzheimer's disease (AD), primarily detect molecular and structural brain changes associated with the condition's pathology. Although these markers are pivotal in detecting disease-specific neuropathological hallmarks, their association with the clinical manifestations of dementia frequently remains poorly defined and exhibits considerable variability. These biomarkers may show abnormalities in cognitively healthy individuals and frequently fail to accurately represent the severity of cognitive and functional impairments in individuals with dementia. Research indicates that synaptic degeneration and functional impairment occur early in the progression of AD and exhibit the strongest correlation with clinical symptoms. This identifies brain functional impairment measurements as promising early indicators for AD detection. Electroencephalography (EEG), a non-invasive and cost-effective method with high temporal resolution, is used as a biomarker for the early detection and diagnosis of AD through frequency-domain analysis of quantitative EEG (qEEG). Many researchers demonstrate that qEEG measures effectively identify disruptions in neuronal activity, including alterations in activity patterns, topographical distribution, and synchronization. Specific findings along the stages of AD include impaired neuronal synchronization, generalized EEG slowing, and an increase in lower-frequency bands accompanied by a decrease in higher-frequency bands of resting state EEG. Moreover, qEEG helps clinicians effectively correlate indicators of AD neuropathology and distinguish between various forms of dementia, positioning it as a promising, low-cost, non-invasive biomarker for dementia. However, additional clinical investigation is required to clarify the diagnostic and prognostic significance of qEEG measurements as early functional markers for AD. This narrative review examines time-frequency domain qEEG analysis as a potential biomarker across various types of dementia. Through a structured search of PubMed and Scopus, we identified studies assessing spectral and connectivity-based qEEG features. Consistent findings include EEG slowing, reduced functional connectivity, and network desynchronization. The review outlines key methodological challenges, such as lack of standardization and limited longitudinal validation, and recommends integrative, multimodal approaches to enhance diagnostic precision and clinical applicability.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192203/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-Frequency Domain Analysis of Quantitative Electroencephalography as a Biomarker for Dementia.\",\"authors\":\"Chanda Simfukwe, Seong Soo A An, Young Chul Youn\",\"doi\":\"10.3390/diagnostics15121509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomarkers currently used to diagnose dementia, including Alzheimer's disease (AD), primarily detect molecular and structural brain changes associated with the condition's pathology. Although these markers are pivotal in detecting disease-specific neuropathological hallmarks, their association with the clinical manifestations of dementia frequently remains poorly defined and exhibits considerable variability. These biomarkers may show abnormalities in cognitively healthy individuals and frequently fail to accurately represent the severity of cognitive and functional impairments in individuals with dementia. Research indicates that synaptic degeneration and functional impairment occur early in the progression of AD and exhibit the strongest correlation with clinical symptoms. This identifies brain functional impairment measurements as promising early indicators for AD detection. Electroencephalography (EEG), a non-invasive and cost-effective method with high temporal resolution, is used as a biomarker for the early detection and diagnosis of AD through frequency-domain analysis of quantitative EEG (qEEG). Many researchers demonstrate that qEEG measures effectively identify disruptions in neuronal activity, including alterations in activity patterns, topographical distribution, and synchronization. Specific findings along the stages of AD include impaired neuronal synchronization, generalized EEG slowing, and an increase in lower-frequency bands accompanied by a decrease in higher-frequency bands of resting state EEG. Moreover, qEEG helps clinicians effectively correlate indicators of AD neuropathology and distinguish between various forms of dementia, positioning it as a promising, low-cost, non-invasive biomarker for dementia. However, additional clinical investigation is required to clarify the diagnostic and prognostic significance of qEEG measurements as early functional markers for AD. This narrative review examines time-frequency domain qEEG analysis as a potential biomarker across various types of dementia. Through a structured search of PubMed and Scopus, we identified studies assessing spectral and connectivity-based qEEG features. Consistent findings include EEG slowing, reduced functional connectivity, and network desynchronization. The review outlines key methodological challenges, such as lack of standardization and limited longitudinal validation, and recommends integrative, multimodal approaches to enhance diagnostic precision and clinical applicability.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192203/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15121509\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121509","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Time-Frequency Domain Analysis of Quantitative Electroencephalography as a Biomarker for Dementia.
Biomarkers currently used to diagnose dementia, including Alzheimer's disease (AD), primarily detect molecular and structural brain changes associated with the condition's pathology. Although these markers are pivotal in detecting disease-specific neuropathological hallmarks, their association with the clinical manifestations of dementia frequently remains poorly defined and exhibits considerable variability. These biomarkers may show abnormalities in cognitively healthy individuals and frequently fail to accurately represent the severity of cognitive and functional impairments in individuals with dementia. Research indicates that synaptic degeneration and functional impairment occur early in the progression of AD and exhibit the strongest correlation with clinical symptoms. This identifies brain functional impairment measurements as promising early indicators for AD detection. Electroencephalography (EEG), a non-invasive and cost-effective method with high temporal resolution, is used as a biomarker for the early detection and diagnosis of AD through frequency-domain analysis of quantitative EEG (qEEG). Many researchers demonstrate that qEEG measures effectively identify disruptions in neuronal activity, including alterations in activity patterns, topographical distribution, and synchronization. Specific findings along the stages of AD include impaired neuronal synchronization, generalized EEG slowing, and an increase in lower-frequency bands accompanied by a decrease in higher-frequency bands of resting state EEG. Moreover, qEEG helps clinicians effectively correlate indicators of AD neuropathology and distinguish between various forms of dementia, positioning it as a promising, low-cost, non-invasive biomarker for dementia. However, additional clinical investigation is required to clarify the diagnostic and prognostic significance of qEEG measurements as early functional markers for AD. This narrative review examines time-frequency domain qEEG analysis as a potential biomarker across various types of dementia. Through a structured search of PubMed and Scopus, we identified studies assessing spectral and connectivity-based qEEG features. Consistent findings include EEG slowing, reduced functional connectivity, and network desynchronization. The review outlines key methodological challenges, such as lack of standardization and limited longitudinal validation, and recommends integrative, multimodal approaches to enhance diagnostic precision and clinical applicability.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.