Abdulsamet Aktas, Taha Cap, Gorkem Serbes, Hamza Osman Ilhan, Hakkı Uzun
{"title":"精子形态综合评估的先进多层次集成学习方法。","authors":"Abdulsamet Aktas, Taha Cap, Gorkem Serbes, Hamza Osman Ilhan, Hakkı Uzun","doi":"10.3390/diagnostics15121564","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Fertility is fundamental to human well-being, significantly impacting both individual lives and societal development. In particular, sperm morphology-referring to the shape, size, and structural integrity of sperm cells-is a key indicator in diagnosing male infertility and selecting viable sperm in assisted reproductive technologies such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). However, traditional manual evaluation methods are highly subjective and inconsistent, creating a need for standardized, automated systems. <b>Objectives:</b> This study aims to develop a robust and fully automated sperm morphology classification framework capable of accurately identifying a wide range of morphological abnormalities, thereby minimizing observer variability and improving diagnostic support in reproductive healthcare. <b>Methods:</b> We propose a novel ensemble-based classification approach that combines convolutional neural network (CNN)-derived features using both feature-level and decision-level fusion techniques. Features extracted from multiple EfficientNetV2 variants are fused and classified using Support Vector Machines (SVM), Random Forest (RF), and Multi-Layer Perceptron with Attention (MLP-Attention). Decision-level fusion is achieved via soft voting to enhance robustness and accuracy. <b>Results:</b> The proposed ensemble framework was evaluated using the Hi-LabSpermMorpho dataset, which contains 18 distinct sperm morphology classes. The fusion-based model achieved an accuracy of 67.70%, significantly outperforming individual classifiers. The integration of multiple CNN architectures and ensemble techniques effectively mitigated class imbalance and enhanced the generalizability of the model. <b>Conclusions:</b> The presented methodology demonstrates a substantial improvement over traditional and single-model approaches in automated sperm morphology classification. By leveraging ensemble learning and multi-level fusion, the model provides a reliable and scalable solution for clinical decision-making in male fertility assessment.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192502/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced Multi-Level Ensemble Learning Approaches for Comprehensive Sperm Morphology Assessment.\",\"authors\":\"Abdulsamet Aktas, Taha Cap, Gorkem Serbes, Hamza Osman Ilhan, Hakkı Uzun\",\"doi\":\"10.3390/diagnostics15121564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> Fertility is fundamental to human well-being, significantly impacting both individual lives and societal development. In particular, sperm morphology-referring to the shape, size, and structural integrity of sperm cells-is a key indicator in diagnosing male infertility and selecting viable sperm in assisted reproductive technologies such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). However, traditional manual evaluation methods are highly subjective and inconsistent, creating a need for standardized, automated systems. <b>Objectives:</b> This study aims to develop a robust and fully automated sperm morphology classification framework capable of accurately identifying a wide range of morphological abnormalities, thereby minimizing observer variability and improving diagnostic support in reproductive healthcare. <b>Methods:</b> We propose a novel ensemble-based classification approach that combines convolutional neural network (CNN)-derived features using both feature-level and decision-level fusion techniques. Features extracted from multiple EfficientNetV2 variants are fused and classified using Support Vector Machines (SVM), Random Forest (RF), and Multi-Layer Perceptron with Attention (MLP-Attention). Decision-level fusion is achieved via soft voting to enhance robustness and accuracy. <b>Results:</b> The proposed ensemble framework was evaluated using the Hi-LabSpermMorpho dataset, which contains 18 distinct sperm morphology classes. The fusion-based model achieved an accuracy of 67.70%, significantly outperforming individual classifiers. The integration of multiple CNN architectures and ensemble techniques effectively mitigated class imbalance and enhanced the generalizability of the model. <b>Conclusions:</b> The presented methodology demonstrates a substantial improvement over traditional and single-model approaches in automated sperm morphology classification. By leveraging ensemble learning and multi-level fusion, the model provides a reliable and scalable solution for clinical decision-making in male fertility assessment.</p>\",\"PeriodicalId\":11225,\"journal\":{\"name\":\"Diagnostics\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192502/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/diagnostics15121564\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121564","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Advanced Multi-Level Ensemble Learning Approaches for Comprehensive Sperm Morphology Assessment.
Introduction: Fertility is fundamental to human well-being, significantly impacting both individual lives and societal development. In particular, sperm morphology-referring to the shape, size, and structural integrity of sperm cells-is a key indicator in diagnosing male infertility and selecting viable sperm in assisted reproductive technologies such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI). However, traditional manual evaluation methods are highly subjective and inconsistent, creating a need for standardized, automated systems. Objectives: This study aims to develop a robust and fully automated sperm morphology classification framework capable of accurately identifying a wide range of morphological abnormalities, thereby minimizing observer variability and improving diagnostic support in reproductive healthcare. Methods: We propose a novel ensemble-based classification approach that combines convolutional neural network (CNN)-derived features using both feature-level and decision-level fusion techniques. Features extracted from multiple EfficientNetV2 variants are fused and classified using Support Vector Machines (SVM), Random Forest (RF), and Multi-Layer Perceptron with Attention (MLP-Attention). Decision-level fusion is achieved via soft voting to enhance robustness and accuracy. Results: The proposed ensemble framework was evaluated using the Hi-LabSpermMorpho dataset, which contains 18 distinct sperm morphology classes. The fusion-based model achieved an accuracy of 67.70%, significantly outperforming individual classifiers. The integration of multiple CNN architectures and ensemble techniques effectively mitigated class imbalance and enhanced the generalizability of the model. Conclusions: The presented methodology demonstrates a substantial improvement over traditional and single-model approaches in automated sperm morphology classification. By leveraging ensemble learning and multi-level fusion, the model provides a reliable and scalable solution for clinical decision-making in male fertility assessment.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.