机器学习和模拟:巴西实现高效急救护理的途径。

IF 1.1 4区 医学 Q4 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Ciencia & saude coletiva Pub Date : 2025-06-01 Epub Date: 2025-02-27 DOI:10.1590/1413-81232025306.03522025
Arthur Pinheiro de Araújo Costa, Vitor Pinheiro de Araújo Costa, Daniel Augusto de Moura Pereira, Igor Pinheiro de Araújo Costa, Miguel Ângelo Lellis Moreira, Gioliano de Oliveira Braga, Marcos Dos Santos, Carlos Francisco Simões Gomes
{"title":"机器学习和模拟:巴西实现高效急救护理的途径。","authors":"Arthur Pinheiro de Araújo Costa, Vitor Pinheiro de Araújo Costa, Daniel Augusto de Moura Pereira, Igor Pinheiro de Araújo Costa, Miguel Ângelo Lellis Moreira, Gioliano de Oliveira Braga, Marcos Dos Santos, Carlos Francisco Simões Gomes","doi":"10.1590/1413-81232025306.03522025","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling and Simulation (M&S) allows for reproducing medical procedures and services, understanding disease progression, and predicting treatment responses without risks to real patients. This study aims to simulate the ambulance service system of the Mobile Emergency Care Service (SAMU) in a Brazilian region, using the Arena software and Machine Learning (ML). The quantitative methodology combines mathematical modeling and a case study to analyze variables such as the number of ambulances, patient arrivals, waiting times, and workload. Using the Manchester Protocol as a reference, the Arena results feed a regression model to relate waiting times and the number of ambulances. Integrating these techniques allowed for predictions regarding the impact of different resource configurations. Based on real data, the numerical results indicated reduced waiting times with increased ambulances and streamlined resource allocation. Thus, by contributing to the operational efficiency of mobile emergency services, the findings also strengthen the resilient performance of the Unified Health System (SUS) in the face of adversities.</p>","PeriodicalId":10195,"journal":{"name":"Ciencia & saude coletiva","volume":"30 6","pages":"e03522025"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and Simulation: pathways to efficient emergency care in Brazil.\",\"authors\":\"Arthur Pinheiro de Araújo Costa, Vitor Pinheiro de Araújo Costa, Daniel Augusto de Moura Pereira, Igor Pinheiro de Araújo Costa, Miguel Ângelo Lellis Moreira, Gioliano de Oliveira Braga, Marcos Dos Santos, Carlos Francisco Simões Gomes\",\"doi\":\"10.1590/1413-81232025306.03522025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modeling and Simulation (M&S) allows for reproducing medical procedures and services, understanding disease progression, and predicting treatment responses without risks to real patients. This study aims to simulate the ambulance service system of the Mobile Emergency Care Service (SAMU) in a Brazilian region, using the Arena software and Machine Learning (ML). The quantitative methodology combines mathematical modeling and a case study to analyze variables such as the number of ambulances, patient arrivals, waiting times, and workload. Using the Manchester Protocol as a reference, the Arena results feed a regression model to relate waiting times and the number of ambulances. Integrating these techniques allowed for predictions regarding the impact of different resource configurations. Based on real data, the numerical results indicated reduced waiting times with increased ambulances and streamlined resource allocation. Thus, by contributing to the operational efficiency of mobile emergency services, the findings also strengthen the resilient performance of the Unified Health System (SUS) in the face of adversities.</p>\",\"PeriodicalId\":10195,\"journal\":{\"name\":\"Ciencia & saude coletiva\",\"volume\":\"30 6\",\"pages\":\"e03522025\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia & saude coletiva\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1413-81232025306.03522025\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia & saude coletiva","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1413-81232025306.03522025","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

建模和仿真(M&S)允许再现医疗程序和服务,了解疾病进展,并预测治疗反应,而不会给真实患者带来风险。本研究旨在利用Arena软件和机器学习(ML)模拟巴西地区移动紧急护理服务(SAMU)的救护车服务系统。定量方法结合了数学建模和案例研究来分析诸如救护车数量、病人到达、等待时间和工作量等变量。使用曼彻斯特协议作为参考,Arena的结果提供了一个回归模型,将等待时间和救护车数量联系起来。整合这些技术可以预测不同资源配置的影响。基于实际数据的数值计算结果表明,救护车的增加减少了等待时间,简化了资源分配。因此,通过促进移动应急服务的运营效率,研究结果还加强了统一卫生系统(SUS)在逆境中的弹性性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Simulation: pathways to efficient emergency care in Brazil.

Modeling and Simulation (M&S) allows for reproducing medical procedures and services, understanding disease progression, and predicting treatment responses without risks to real patients. This study aims to simulate the ambulance service system of the Mobile Emergency Care Service (SAMU) in a Brazilian region, using the Arena software and Machine Learning (ML). The quantitative methodology combines mathematical modeling and a case study to analyze variables such as the number of ambulances, patient arrivals, waiting times, and workload. Using the Manchester Protocol as a reference, the Arena results feed a regression model to relate waiting times and the number of ambulances. Integrating these techniques allowed for predictions regarding the impact of different resource configurations. Based on real data, the numerical results indicated reduced waiting times with increased ambulances and streamlined resource allocation. Thus, by contributing to the operational efficiency of mobile emergency services, the findings also strengthen the resilient performance of the Unified Health System (SUS) in the face of adversities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ciencia & saude coletiva
Ciencia & saude coletiva PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
3.60
自引率
11.80%
发文量
533
审稿时长
12 weeks
期刊介绍: Ciência & Saúde Coletiva publishes debates, analyses, and results of research on a Specific Theme considered current and relevant to the field of Collective Health. Its abbreviated title is Ciênc. saúde coletiva, which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信