利用酶固定化释放流动生物催化的潜力。

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2025-06-25 DOI:10.2533/chimia.2025.411
Cristina Lía Fernández Regueiro, David Roura Padrosa
{"title":"利用酶固定化释放流动生物催化的潜力。","authors":"Cristina Lía Fernández Regueiro, David Roura Padrosa","doi":"10.2533/chimia.2025.411","DOIUrl":null,"url":null,"abstract":"<p><p>Flow biocatalysis combines the superior selectivity and sustainability of enzymes with the flexibility, automation potential, and enhanced productivity of continuous manufacturing. However, to apply a biocatalytic step in flow, some intrinsic limitations of biocatalysts must be addressed, especially their stability and reusability. Thus, enzyme immobilization is a key enabling technology and remains a critical step and one of the main bottlenecks. Immobilizing enzymes on solid supports improves their stability, reusability, and compatibility with flow conditions, but it is limited by the trial-and-error approach at the development stages. In this short perspective, we discuss recent innovations in enzyme immobilization, including in silico design, the combination with 3D printing and high-throughput screening, and present selected examples of applications in flow of immobilized enzymes, with a particular focus on process flexibility and their combination into chemoenzymatic cascades.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 6","pages":"411-416"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the Potential of Flow Biocatalysis with Enzyme Immobilization.\",\"authors\":\"Cristina Lía Fernández Regueiro, David Roura Padrosa\",\"doi\":\"10.2533/chimia.2025.411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flow biocatalysis combines the superior selectivity and sustainability of enzymes with the flexibility, automation potential, and enhanced productivity of continuous manufacturing. However, to apply a biocatalytic step in flow, some intrinsic limitations of biocatalysts must be addressed, especially their stability and reusability. Thus, enzyme immobilization is a key enabling technology and remains a critical step and one of the main bottlenecks. Immobilizing enzymes on solid supports improves their stability, reusability, and compatibility with flow conditions, but it is limited by the trial-and-error approach at the development stages. In this short perspective, we discuss recent innovations in enzyme immobilization, including in silico design, the combination with 3D printing and high-throughput screening, and present selected examples of applications in flow of immobilized enzymes, with a particular focus on process flexibility and their combination into chemoenzymatic cascades.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":\"79 6\",\"pages\":\"411-416\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2025.411\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.411","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

流动生物催化将酶的优越选择性和可持续性与连续制造的灵活性、自动化潜力和提高的生产率相结合。然而,为了在流动中应用生物催化步骤,必须解决生物催化剂的一些固有限制,特别是它们的稳定性和可重用性。因此,酶固定化是一项关键的使能技术,仍然是关键步骤和主要瓶颈之一。将酶固定在固体载体上提高了它们的稳定性、可重用性和与流动条件的兼容性,但在开发阶段,它受到反复试验方法的限制。在这个简短的观点中,我们讨论了酶固定化的最新创新,包括硅设计,与3D打印和高通量筛选的结合,并提出了固定化酶流动的应用实例,特别关注工艺灵活性及其与化学酶级联的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking the Potential of Flow Biocatalysis with Enzyme Immobilization.

Flow biocatalysis combines the superior selectivity and sustainability of enzymes with the flexibility, automation potential, and enhanced productivity of continuous manufacturing. However, to apply a biocatalytic step in flow, some intrinsic limitations of biocatalysts must be addressed, especially their stability and reusability. Thus, enzyme immobilization is a key enabling technology and remains a critical step and one of the main bottlenecks. Immobilizing enzymes on solid supports improves their stability, reusability, and compatibility with flow conditions, but it is limited by the trial-and-error approach at the development stages. In this short perspective, we discuss recent innovations in enzyme immobilization, including in silico design, the combination with 3D printing and high-throughput screening, and present selected examples of applications in flow of immobilized enzymes, with a particular focus on process flexibility and their combination into chemoenzymatic cascades.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信