Guozhuang Li, Nan Wu, Jen Ghabrial, Victoria Stinnett, Melanie Klausner, Laura Morsberger, Patty Long, Ezra Baraban, John M Gross, Ying S Zou
{"title":"骨肉瘤的色变。","authors":"Guozhuang Li, Nan Wu, Jen Ghabrial, Victoria Stinnett, Melanie Klausner, Laura Morsberger, Patty Long, Ezra Baraban, John M Gross, Ying S Zou","doi":"10.3390/biom15060833","DOIUrl":null,"url":null,"abstract":"<p><p>Chromoanagenesis is a catastrophic genomic phenomenon involving sudden, extensive rearrangements within one or a few cell cycles. In osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, these events dramatically alter the genomic landscape, frequently disrupting key tumor suppressor genes like <i>TP53</i> and <i>RB1</i>, amplifying oncogene expression, and propelling tumor progression and evolution. This review elucidates how key chromoanagenic mechanisms, such as chromothripsis and chromoanasynthesis, arise from replication stress and impaired DNA repair pathways, ultimately contributing to genomic instability in osteosarcoma. Chromothripsis features prominently in osteosarcoma, occurring in up to 62% of tumor regions and driving intratumoral heterogeneity through persistent genomic crises. Next-generation sequencing, optical genome mapping, and emerging technologies like single-cell sequencing empower researchers to detect and characterize these complex structural variants, demonstrating how a single catastrophic event can profoundly influence osteosarcoma progression over time. While targeted therapies for osteosarcoma have proven elusive, innovative strategies harnessing comprehensive genomic profiling and patient-derived preclinical models hold promise for uncovering tumor-specific vulnerabilities tied to chromoanagenesis. Ultimately, unraveling how these rapid, large-scale rearrangements fuel osteosarcoma's aggressive nature will not only refine disease classification and prognosis but also pave the way for novel therapeutic approaches to enhance patient outcomes.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromoanagenesis in Osteosarcoma.\",\"authors\":\"Guozhuang Li, Nan Wu, Jen Ghabrial, Victoria Stinnett, Melanie Klausner, Laura Morsberger, Patty Long, Ezra Baraban, John M Gross, Ying S Zou\",\"doi\":\"10.3390/biom15060833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chromoanagenesis is a catastrophic genomic phenomenon involving sudden, extensive rearrangements within one or a few cell cycles. In osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, these events dramatically alter the genomic landscape, frequently disrupting key tumor suppressor genes like <i>TP53</i> and <i>RB1</i>, amplifying oncogene expression, and propelling tumor progression and evolution. This review elucidates how key chromoanagenic mechanisms, such as chromothripsis and chromoanasynthesis, arise from replication stress and impaired DNA repair pathways, ultimately contributing to genomic instability in osteosarcoma. Chromothripsis features prominently in osteosarcoma, occurring in up to 62% of tumor regions and driving intratumoral heterogeneity through persistent genomic crises. Next-generation sequencing, optical genome mapping, and emerging technologies like single-cell sequencing empower researchers to detect and characterize these complex structural variants, demonstrating how a single catastrophic event can profoundly influence osteosarcoma progression over time. While targeted therapies for osteosarcoma have proven elusive, innovative strategies harnessing comprehensive genomic profiling and patient-derived preclinical models hold promise for uncovering tumor-specific vulnerabilities tied to chromoanagenesis. Ultimately, unraveling how these rapid, large-scale rearrangements fuel osteosarcoma's aggressive nature will not only refine disease classification and prognosis but also pave the way for novel therapeutic approaches to enhance patient outcomes.</p>\",\"PeriodicalId\":8943,\"journal\":{\"name\":\"Biomolecules\",\"volume\":\"15 6\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecules\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biom15060833\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060833","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chromoanagenesis is a catastrophic genomic phenomenon involving sudden, extensive rearrangements within one or a few cell cycles. In osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, these events dramatically alter the genomic landscape, frequently disrupting key tumor suppressor genes like TP53 and RB1, amplifying oncogene expression, and propelling tumor progression and evolution. This review elucidates how key chromoanagenic mechanisms, such as chromothripsis and chromoanasynthesis, arise from replication stress and impaired DNA repair pathways, ultimately contributing to genomic instability in osteosarcoma. Chromothripsis features prominently in osteosarcoma, occurring in up to 62% of tumor regions and driving intratumoral heterogeneity through persistent genomic crises. Next-generation sequencing, optical genome mapping, and emerging technologies like single-cell sequencing empower researchers to detect and characterize these complex structural variants, demonstrating how a single catastrophic event can profoundly influence osteosarcoma progression over time. While targeted therapies for osteosarcoma have proven elusive, innovative strategies harnessing comprehensive genomic profiling and patient-derived preclinical models hold promise for uncovering tumor-specific vulnerabilities tied to chromoanagenesis. Ultimately, unraveling how these rapid, large-scale rearrangements fuel osteosarcoma's aggressive nature will not only refine disease classification and prognosis but also pave the way for novel therapeutic approaches to enhance patient outcomes.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.