Tobias Heß, Thomas L Milani, Jan Stoll, Christian Mitschke
{"title":"有膝关节损伤史受试者肌肉疲劳后的跑跳:戴膝托对生物力学的急性影响是什么?","authors":"Tobias Heß, Thomas L Milani, Jan Stoll, Christian Mitschke","doi":"10.3390/bioengineering12060661","DOIUrl":null,"url":null,"abstract":"<p><p>The knee is one of the most frequently injured joints, involving various structures. To prevent reinjury after rehabilitation, braces are commonly used. However, most studies on knee supports focus on subjects with anterior cruciate ligament (ACL) injuries and do not account for muscle fatigue, which typically occurs during prolonged intense training and can significantly increase the risk of injury. Hence, this study investigates the acute effects of wearing a knee brace on biomechanics in subjects with a history of various unilateral knee injuries or pain under muscle fatigue. In total, 50 subjects completed an intense fatigue protocol and then performed counter-movement jumps and running tests on a force plate while tracking kinematics with a marker-based 3D motion analysis system. Additionally, subjects filled out a visual analog scale (VAS) to assess knee pain and stability. Tests were conducted on the injured leg with and without a knee brace (Sports Knee Support, Bauerfeind AG, Zeulenroda-Triebes, Germany) and on the healthy leg. Results indicated that wearing the knee brace stabilized knee movement in the frontal plane, with a significant reduction in maximal medio-lateral knee acceleration and knee abduction moment during running and jumping. The brace also normalized loading on the injured leg. We observed higher maximal knee flexion moments, which were associated with increased vertical ground reaction forces, segment velocities, and knee flexion angles. Subjects reported less pain and greater stability while wearing the knee brace. Therefore, we confirm that wearing a knee brace on the injured leg improves joint biomechanics by enhancing stability and kinematics and reducing pain during running and jumping, even with muscle fatigue. Consequently, wearing a knee brace after a knee joint injury may reduce the risk of reinjury.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189066/pdf/","citationCount":"0","resultStr":"{\"title\":\"Running and Jumping After Muscle Fatigue in Subjects with a History of Knee Injury: What Are the Acute Effects of Wearing a Knee Brace on Biomechanics?\",\"authors\":\"Tobias Heß, Thomas L Milani, Jan Stoll, Christian Mitschke\",\"doi\":\"10.3390/bioengineering12060661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The knee is one of the most frequently injured joints, involving various structures. To prevent reinjury after rehabilitation, braces are commonly used. However, most studies on knee supports focus on subjects with anterior cruciate ligament (ACL) injuries and do not account for muscle fatigue, which typically occurs during prolonged intense training and can significantly increase the risk of injury. Hence, this study investigates the acute effects of wearing a knee brace on biomechanics in subjects with a history of various unilateral knee injuries or pain under muscle fatigue. In total, 50 subjects completed an intense fatigue protocol and then performed counter-movement jumps and running tests on a force plate while tracking kinematics with a marker-based 3D motion analysis system. Additionally, subjects filled out a visual analog scale (VAS) to assess knee pain and stability. Tests were conducted on the injured leg with and without a knee brace (Sports Knee Support, Bauerfeind AG, Zeulenroda-Triebes, Germany) and on the healthy leg. Results indicated that wearing the knee brace stabilized knee movement in the frontal plane, with a significant reduction in maximal medio-lateral knee acceleration and knee abduction moment during running and jumping. The brace also normalized loading on the injured leg. We observed higher maximal knee flexion moments, which were associated with increased vertical ground reaction forces, segment velocities, and knee flexion angles. Subjects reported less pain and greater stability while wearing the knee brace. Therefore, we confirm that wearing a knee brace on the injured leg improves joint biomechanics by enhancing stability and kinematics and reducing pain during running and jumping, even with muscle fatigue. Consequently, wearing a knee brace after a knee joint injury may reduce the risk of reinjury.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189066/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060661\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060661","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Running and Jumping After Muscle Fatigue in Subjects with a History of Knee Injury: What Are the Acute Effects of Wearing a Knee Brace on Biomechanics?
The knee is one of the most frequently injured joints, involving various structures. To prevent reinjury after rehabilitation, braces are commonly used. However, most studies on knee supports focus on subjects with anterior cruciate ligament (ACL) injuries and do not account for muscle fatigue, which typically occurs during prolonged intense training and can significantly increase the risk of injury. Hence, this study investigates the acute effects of wearing a knee brace on biomechanics in subjects with a history of various unilateral knee injuries or pain under muscle fatigue. In total, 50 subjects completed an intense fatigue protocol and then performed counter-movement jumps and running tests on a force plate while tracking kinematics with a marker-based 3D motion analysis system. Additionally, subjects filled out a visual analog scale (VAS) to assess knee pain and stability. Tests were conducted on the injured leg with and without a knee brace (Sports Knee Support, Bauerfeind AG, Zeulenroda-Triebes, Germany) and on the healthy leg. Results indicated that wearing the knee brace stabilized knee movement in the frontal plane, with a significant reduction in maximal medio-lateral knee acceleration and knee abduction moment during running and jumping. The brace also normalized loading on the injured leg. We observed higher maximal knee flexion moments, which were associated with increased vertical ground reaction forces, segment velocities, and knee flexion angles. Subjects reported less pain and greater stability while wearing the knee brace. Therefore, we confirm that wearing a knee brace on the injured leg improves joint biomechanics by enhancing stability and kinematics and reducing pain during running and jumping, even with muscle fatigue. Consequently, wearing a knee brace after a knee joint injury may reduce the risk of reinjury.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering