Fabián Silva-Aravena, Jenny Morales, Manoj Jayabalan, Paula Sáez
{"title":"优化高复杂性医院的MRI调度:数字孪生和强化学习方法。","authors":"Fabián Silva-Aravena, Jenny Morales, Manoj Jayabalan, Paula Sáez","doi":"10.3390/bioengineering12060626","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) services in high-complexity hospitals often suffer from operational inefficiencies, including suboptimal MRI machine utilization, prolonged patient waiting times, and inequitable service delivery across clinical priority levels. Addressing these challenges requires intelligent scheduling strategies capable of dynamically managing patient waitlists based on clinical urgency while optimizing resource allocation. In this study, we propose a novel framework that integrates a digital twin (DT) of the MRI operational environment with a reinforcement learning (RL) agent trained via Deep Q-Networks (DQN). The digital twin simulates realistic hospital dynamics using parameters extracted from a MRI publicly available dataset, modeling patient arrivals, examination durations, MRI machine reliability, and clinical priority stratifications. Our strategy learns policies that maximize MRI machine utilization, minimize average waiting times, and ensure fairness by prioritizing urgent cases in the patient waitlist. Our approach outperforms traditional baselines, achieving a 14.5% increase in MRI machine utilization, a 44.8% reduction in average patient waiting time, and substantial improvements in priority-weighted fairness compared to First-Come-First-Served (FCFS) and static priority heuristics. Our strategy is designed to support hospital deployment, offering scalability, adaptability to dynamic operational conditions, and seamless integration with existing healthcare information systems. By advancing the use of digital twins and reinforcement learning in healthcare operations, our work provides a promising pathway toward optimizing MRI services, improving patient satisfaction, and enhancing clinical outcomes in complex hospital environments.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189641/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimizing MRI Scheduling in High-Complexity Hospitals: A Digital Twin and Reinforcement Learning Approach.\",\"authors\":\"Fabián Silva-Aravena, Jenny Morales, Manoj Jayabalan, Paula Sáez\",\"doi\":\"10.3390/bioengineering12060626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Resonance Imaging (MRI) services in high-complexity hospitals often suffer from operational inefficiencies, including suboptimal MRI machine utilization, prolonged patient waiting times, and inequitable service delivery across clinical priority levels. Addressing these challenges requires intelligent scheduling strategies capable of dynamically managing patient waitlists based on clinical urgency while optimizing resource allocation. In this study, we propose a novel framework that integrates a digital twin (DT) of the MRI operational environment with a reinforcement learning (RL) agent trained via Deep Q-Networks (DQN). The digital twin simulates realistic hospital dynamics using parameters extracted from a MRI publicly available dataset, modeling patient arrivals, examination durations, MRI machine reliability, and clinical priority stratifications. Our strategy learns policies that maximize MRI machine utilization, minimize average waiting times, and ensure fairness by prioritizing urgent cases in the patient waitlist. Our approach outperforms traditional baselines, achieving a 14.5% increase in MRI machine utilization, a 44.8% reduction in average patient waiting time, and substantial improvements in priority-weighted fairness compared to First-Come-First-Served (FCFS) and static priority heuristics. Our strategy is designed to support hospital deployment, offering scalability, adaptability to dynamic operational conditions, and seamless integration with existing healthcare information systems. By advancing the use of digital twins and reinforcement learning in healthcare operations, our work provides a promising pathway toward optimizing MRI services, improving patient satisfaction, and enhancing clinical outcomes in complex hospital environments.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189641/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060626\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060626","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Optimizing MRI Scheduling in High-Complexity Hospitals: A Digital Twin and Reinforcement Learning Approach.
Magnetic Resonance Imaging (MRI) services in high-complexity hospitals often suffer from operational inefficiencies, including suboptimal MRI machine utilization, prolonged patient waiting times, and inequitable service delivery across clinical priority levels. Addressing these challenges requires intelligent scheduling strategies capable of dynamically managing patient waitlists based on clinical urgency while optimizing resource allocation. In this study, we propose a novel framework that integrates a digital twin (DT) of the MRI operational environment with a reinforcement learning (RL) agent trained via Deep Q-Networks (DQN). The digital twin simulates realistic hospital dynamics using parameters extracted from a MRI publicly available dataset, modeling patient arrivals, examination durations, MRI machine reliability, and clinical priority stratifications. Our strategy learns policies that maximize MRI machine utilization, minimize average waiting times, and ensure fairness by prioritizing urgent cases in the patient waitlist. Our approach outperforms traditional baselines, achieving a 14.5% increase in MRI machine utilization, a 44.8% reduction in average patient waiting time, and substantial improvements in priority-weighted fairness compared to First-Come-First-Served (FCFS) and static priority heuristics. Our strategy is designed to support hospital deployment, offering scalability, adaptability to dynamic operational conditions, and seamless integration with existing healthcare information systems. By advancing the use of digital twins and reinforcement learning in healthcare operations, our work provides a promising pathway toward optimizing MRI services, improving patient satisfaction, and enhancing clinical outcomes in complex hospital environments.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering