Chenghao Zhang, Lingfei Wang, Chunyu Zhang, Yu Zhang, Peng Wang, Jin Li
{"title":"基于多通道特征提取和交叉融合的肝脏语义分割方法。","authors":"Chenghao Zhang, Lingfei Wang, Chunyu Zhang, Yu Zhang, Peng Wang, Jin Li","doi":"10.3390/bioengineering12060636","DOIUrl":null,"url":null,"abstract":"<p><p>Semantic segmentation plays a critical role in medical image analysis, offering indispensable information for the diagnosis and treatment planning of liver diseases. However, due to the complex anatomical structure of the liver and significant inter-patient variability, the current methods exhibit notable limitations in feature extraction and fusion, which pose a major challenge to achieving accurate liver segmentation. To address these challenges, this study proposes an improved U-Net-based liver semantic segmentation method that enhances segmentation performance through optimized feature extraction and fusion mechanisms. Firstly, a multi-scale input strategy is employed to account for the variability in liver features at different scales. A multi-scale convolutional attention (MSCA) mechanism is integrated into the encoder to aggregate multi-scale information and improve feature representation. Secondly, an atrous spatial pyramid pooling (ASPP) module is incorporated into the bottleneck layer to capture features at various receptive fields using dilated convolutions, while global pooling is applied to enhance the acquisition of contextual information and ensure efficient feature transmission. Furthermore, a Channel Transformer module replaces the traditional skip connections to strengthen the interaction and fusion between encoder and decoder features, thereby reducing the semantic gap. The effectiveness of this method was validated on integrated public datasets, achieving an Intersection over Union (IoU) of 0.9315 for liver segmentation tasks, outperforming other mainstream approaches. This provides a novel solution for precise liver image segmentation and holds significant clinical value for liver disease diagnosis and treatment.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liver Semantic Segmentation Method Based on Multi-Channel Feature Extraction and Cross Fusion.\",\"authors\":\"Chenghao Zhang, Lingfei Wang, Chunyu Zhang, Yu Zhang, Peng Wang, Jin Li\",\"doi\":\"10.3390/bioengineering12060636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Semantic segmentation plays a critical role in medical image analysis, offering indispensable information for the diagnosis and treatment planning of liver diseases. However, due to the complex anatomical structure of the liver and significant inter-patient variability, the current methods exhibit notable limitations in feature extraction and fusion, which pose a major challenge to achieving accurate liver segmentation. To address these challenges, this study proposes an improved U-Net-based liver semantic segmentation method that enhances segmentation performance through optimized feature extraction and fusion mechanisms. Firstly, a multi-scale input strategy is employed to account for the variability in liver features at different scales. A multi-scale convolutional attention (MSCA) mechanism is integrated into the encoder to aggregate multi-scale information and improve feature representation. Secondly, an atrous spatial pyramid pooling (ASPP) module is incorporated into the bottleneck layer to capture features at various receptive fields using dilated convolutions, while global pooling is applied to enhance the acquisition of contextual information and ensure efficient feature transmission. Furthermore, a Channel Transformer module replaces the traditional skip connections to strengthen the interaction and fusion between encoder and decoder features, thereby reducing the semantic gap. The effectiveness of this method was validated on integrated public datasets, achieving an Intersection over Union (IoU) of 0.9315 for liver segmentation tasks, outperforming other mainstream approaches. This provides a novel solution for precise liver image segmentation and holds significant clinical value for liver disease diagnosis and treatment.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060636\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060636","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
语义分割在医学图像分析中起着至关重要的作用,为肝脏疾病的诊断和治疗计划提供了不可或缺的信息。然而,由于肝脏复杂的解剖结构和患者之间的差异,目前的方法在特征提取和融合方面存在明显的局限性,这对实现准确的肝脏分割构成了重大挑战。为了解决这些挑战,本研究提出了一种改进的基于u - net的肝脏语义分割方法,通过优化特征提取和融合机制来提高分割性能。首先,采用多尺度输入策略来考虑不同尺度下肝脏特征的可变性。在编码器中集成了多尺度卷积注意(MSCA)机制,实现了多尺度信息的聚合,提高了特征表示。其次,在瓶颈层中引入空间金字塔池(ASPP)模块,利用扩张卷积捕获不同感受域的特征,同时利用全局池化增强上下文信息的获取,保证特征的高效传输;此外,Channel Transformer模块取代了传统的跳过连接,加强了编码器和解码器特征之间的交互和融合,从而减少了语义差距。在集成的公共数据集上验证了该方法的有效性,肝脏分割任务的IoU (Intersection over Union)为0.9315,优于其他主流方法。这为肝脏图像的精确分割提供了一种新的解决方案,对肝脏疾病的诊断和治疗具有重要的临床价值。
Liver Semantic Segmentation Method Based on Multi-Channel Feature Extraction and Cross Fusion.
Semantic segmentation plays a critical role in medical image analysis, offering indispensable information for the diagnosis and treatment planning of liver diseases. However, due to the complex anatomical structure of the liver and significant inter-patient variability, the current methods exhibit notable limitations in feature extraction and fusion, which pose a major challenge to achieving accurate liver segmentation. To address these challenges, this study proposes an improved U-Net-based liver semantic segmentation method that enhances segmentation performance through optimized feature extraction and fusion mechanisms. Firstly, a multi-scale input strategy is employed to account for the variability in liver features at different scales. A multi-scale convolutional attention (MSCA) mechanism is integrated into the encoder to aggregate multi-scale information and improve feature representation. Secondly, an atrous spatial pyramid pooling (ASPP) module is incorporated into the bottleneck layer to capture features at various receptive fields using dilated convolutions, while global pooling is applied to enhance the acquisition of contextual information and ensure efficient feature transmission. Furthermore, a Channel Transformer module replaces the traditional skip connections to strengthen the interaction and fusion between encoder and decoder features, thereby reducing the semantic gap. The effectiveness of this method was validated on integrated public datasets, achieving an Intersection over Union (IoU) of 0.9315 for liver segmentation tasks, outperforming other mainstream approaches. This provides a novel solution for precise liver image segmentation and holds significant clinical value for liver disease diagnosis and treatment.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering