{"title":"外侧皮质固定是肋骨骨折稳定的最佳策略:一项针对患者的有限元分析。","authors":"Xiang Zhang, Xuejun Lan, Wang Shen, Qinghua Zhou","doi":"10.3390/bioengineering12060594","DOIUrl":null,"url":null,"abstract":"<p><p>The surgical stabilization of rib fractures helps maintain chest wall stability and reduces respiratory complications. This study aimed to identify the key biomechanical parameters for evaluating the stability of rib fracture fixation using finite element analysis (FEA) and compare four rib fixation configurations-intramedullary rib splint (IRS), locking plate (LP), claw-shape plate, and intrathoracic plate (IP)-using biomechanical analysis. Forty patient-specific FEA models of fourth-rib fractures were constructed using the computed tomography scans of 10 patients. Maximum implant displacement (MID), maximum rib fracture displacement, maximum implant von Mises stress (MIVMS), maximum rib von Mises stress, maximum rib strain, and maximum interfragmentary gap (MIG) were assessed by simulating the anterior and posterior loads on the ribs during postoperative frontal collision. The fixation stabilities were evaluated using entropy scores. MIVMS, MIG, and MID exhibited the highest weighting coefficients. Lateral cortical fixation strategies, particularly LP configuration, demonstrated superior biomechanical performance compared with IRS and IP systems. The composite score of the LP was significantly higher than that of the other modalities. MIVMS, MIG, and MID were identified as critical parameters for evaluating the rib fracture fixation stability, and the lateral cortical fixation strategy (LP) enhanced the structural stability of rib fracture fixation.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lateral Cortical Fixation as the Optimal Strategy for Achieving Stability in Rib Fractures: A Patient-Specific Finite Element Analysis.\",\"authors\":\"Xiang Zhang, Xuejun Lan, Wang Shen, Qinghua Zhou\",\"doi\":\"10.3390/bioengineering12060594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The surgical stabilization of rib fractures helps maintain chest wall stability and reduces respiratory complications. This study aimed to identify the key biomechanical parameters for evaluating the stability of rib fracture fixation using finite element analysis (FEA) and compare four rib fixation configurations-intramedullary rib splint (IRS), locking plate (LP), claw-shape plate, and intrathoracic plate (IP)-using biomechanical analysis. Forty patient-specific FEA models of fourth-rib fractures were constructed using the computed tomography scans of 10 patients. Maximum implant displacement (MID), maximum rib fracture displacement, maximum implant von Mises stress (MIVMS), maximum rib von Mises stress, maximum rib strain, and maximum interfragmentary gap (MIG) were assessed by simulating the anterior and posterior loads on the ribs during postoperative frontal collision. The fixation stabilities were evaluated using entropy scores. MIVMS, MIG, and MID exhibited the highest weighting coefficients. Lateral cortical fixation strategies, particularly LP configuration, demonstrated superior biomechanical performance compared with IRS and IP systems. The composite score of the LP was significantly higher than that of the other modalities. MIVMS, MIG, and MID were identified as critical parameters for evaluating the rib fracture fixation stability, and the lateral cortical fixation strategy (LP) enhanced the structural stability of rib fracture fixation.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060594\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060594","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Lateral Cortical Fixation as the Optimal Strategy for Achieving Stability in Rib Fractures: A Patient-Specific Finite Element Analysis.
The surgical stabilization of rib fractures helps maintain chest wall stability and reduces respiratory complications. This study aimed to identify the key biomechanical parameters for evaluating the stability of rib fracture fixation using finite element analysis (FEA) and compare four rib fixation configurations-intramedullary rib splint (IRS), locking plate (LP), claw-shape plate, and intrathoracic plate (IP)-using biomechanical analysis. Forty patient-specific FEA models of fourth-rib fractures were constructed using the computed tomography scans of 10 patients. Maximum implant displacement (MID), maximum rib fracture displacement, maximum implant von Mises stress (MIVMS), maximum rib von Mises stress, maximum rib strain, and maximum interfragmentary gap (MIG) were assessed by simulating the anterior and posterior loads on the ribs during postoperative frontal collision. The fixation stabilities were evaluated using entropy scores. MIVMS, MIG, and MID exhibited the highest weighting coefficients. Lateral cortical fixation strategies, particularly LP configuration, demonstrated superior biomechanical performance compared with IRS and IP systems. The composite score of the LP was significantly higher than that of the other modalities. MIVMS, MIG, and MID were identified as critical parameters for evaluating the rib fracture fixation stability, and the lateral cortical fixation strategy (LP) enhanced the structural stability of rib fracture fixation.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering