{"title":"髋部骨折:常见健康挑战的临床、生物材料和生物力学见解。","authors":"Yunhua Luo","doi":"10.3390/bioengineering12060580","DOIUrl":null,"url":null,"abstract":"<p><p>Hip fractures represent a significant public health challenge, particularly among the elderly, due to their high incidence, morbidity, and mortality rates. This review provides a comprehensive understanding of hip fractures through clinical, biomaterial, and biomechanical perspectives. Clinically, we examined key risk factors, including age, bone mineral density, and the high prevalence of falls, which account for over 95% of hip fractures. However, current clinical tools, such as FRAX, have notable limitations in accurately assessing fracture risk in individuals due to their reliance on statistical models, the treatment of interdependent risk factors as independent, and the omission of key variables like diabetes. From a biomaterial perspective, we analyzed bone composition-specifically the balance of inorganic minerals, organic proteins, and water-and its role in determining bone strength and fracture susceptibility. Various risk factors ultimately influence this composition balance, thereby affecting bone strength. Therefore, accurately measuring bone composition may provide a more reliable assessment of hip fracture risk. Although emerging imaging technologies such as dual-energy CT and MRI show promise for in vivo assessments of bone composition, these techniques still face significant challenges and remain an active area of research. Biomechanically, we explored the forces generated during falls, noting that impact forces can vastly exceed normal physiological loads and may exploit the anisotropic properties of bone, leading to fractures even in healthy individuals with strong bones. This understanding emphasizes the critical role of fall prevention in reducing fracture risk and highlights the limitations of using fall-induced fracture incidence as a validation metric for clinical assessment tools. Lastly, we discuss preventive strategies, including passive measures like environmental modifications for individuals diagnosed with low bone strength and proactive measures such as muscle strengthening and cognitive training. While passive measures are necessary for immediate protection, proactive strategies are more effective in the long term by addressing underlying risk factors for falls and promoting sustained bone health. This interdisciplinary review underscores the need to integrate clinical, biomaterial, and biomechanical factors to improve diagnostic accuracy, prevention, and treatment strategies for hip fractures, ultimately advancing public health outcomes in aging populations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189134/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hip Fractures: Clinical, Biomaterial and Biomechanical Insights into a Common Health Challenge.\",\"authors\":\"Yunhua Luo\",\"doi\":\"10.3390/bioengineering12060580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hip fractures represent a significant public health challenge, particularly among the elderly, due to their high incidence, morbidity, and mortality rates. This review provides a comprehensive understanding of hip fractures through clinical, biomaterial, and biomechanical perspectives. Clinically, we examined key risk factors, including age, bone mineral density, and the high prevalence of falls, which account for over 95% of hip fractures. However, current clinical tools, such as FRAX, have notable limitations in accurately assessing fracture risk in individuals due to their reliance on statistical models, the treatment of interdependent risk factors as independent, and the omission of key variables like diabetes. From a biomaterial perspective, we analyzed bone composition-specifically the balance of inorganic minerals, organic proteins, and water-and its role in determining bone strength and fracture susceptibility. Various risk factors ultimately influence this composition balance, thereby affecting bone strength. Therefore, accurately measuring bone composition may provide a more reliable assessment of hip fracture risk. Although emerging imaging technologies such as dual-energy CT and MRI show promise for in vivo assessments of bone composition, these techniques still face significant challenges and remain an active area of research. Biomechanically, we explored the forces generated during falls, noting that impact forces can vastly exceed normal physiological loads and may exploit the anisotropic properties of bone, leading to fractures even in healthy individuals with strong bones. This understanding emphasizes the critical role of fall prevention in reducing fracture risk and highlights the limitations of using fall-induced fracture incidence as a validation metric for clinical assessment tools. Lastly, we discuss preventive strategies, including passive measures like environmental modifications for individuals diagnosed with low bone strength and proactive measures such as muscle strengthening and cognitive training. While passive measures are necessary for immediate protection, proactive strategies are more effective in the long term by addressing underlying risk factors for falls and promoting sustained bone health. This interdisciplinary review underscores the need to integrate clinical, biomaterial, and biomechanical factors to improve diagnostic accuracy, prevention, and treatment strategies for hip fractures, ultimately advancing public health outcomes in aging populations.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189134/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060580\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060580","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hip Fractures: Clinical, Biomaterial and Biomechanical Insights into a Common Health Challenge.
Hip fractures represent a significant public health challenge, particularly among the elderly, due to their high incidence, morbidity, and mortality rates. This review provides a comprehensive understanding of hip fractures through clinical, biomaterial, and biomechanical perspectives. Clinically, we examined key risk factors, including age, bone mineral density, and the high prevalence of falls, which account for over 95% of hip fractures. However, current clinical tools, such as FRAX, have notable limitations in accurately assessing fracture risk in individuals due to their reliance on statistical models, the treatment of interdependent risk factors as independent, and the omission of key variables like diabetes. From a biomaterial perspective, we analyzed bone composition-specifically the balance of inorganic minerals, organic proteins, and water-and its role in determining bone strength and fracture susceptibility. Various risk factors ultimately influence this composition balance, thereby affecting bone strength. Therefore, accurately measuring bone composition may provide a more reliable assessment of hip fracture risk. Although emerging imaging technologies such as dual-energy CT and MRI show promise for in vivo assessments of bone composition, these techniques still face significant challenges and remain an active area of research. Biomechanically, we explored the forces generated during falls, noting that impact forces can vastly exceed normal physiological loads and may exploit the anisotropic properties of bone, leading to fractures even in healthy individuals with strong bones. This understanding emphasizes the critical role of fall prevention in reducing fracture risk and highlights the limitations of using fall-induced fracture incidence as a validation metric for clinical assessment tools. Lastly, we discuss preventive strategies, including passive measures like environmental modifications for individuals diagnosed with low bone strength and proactive measures such as muscle strengthening and cognitive training. While passive measures are necessary for immediate protection, proactive strategies are more effective in the long term by addressing underlying risk factors for falls and promoting sustained bone health. This interdisciplinary review underscores the need to integrate clinical, biomaterial, and biomechanical factors to improve diagnostic accuracy, prevention, and treatment strategies for hip fractures, ultimately advancing public health outcomes in aging populations.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering