Md Redwan Ahmed, Hamdadur Rahman, Zishad Hossain Limon, Md Ismail Hossain Siddiqui, Mahbub Alam Khan, Al Shahriar Uddin Khondakar Pranta, Rezaul Haque, S M Masfequier Rahman Swapno, Young-Im Cho, Mohamed S Abdallah
{"title":"基于可解释人工智能的分层Swin变压器集成鲁棒和分散乳腺癌诊断。","authors":"Md Redwan Ahmed, Hamdadur Rahman, Zishad Hossain Limon, Md Ismail Hossain Siddiqui, Mahbub Alam Khan, Al Shahriar Uddin Khondakar Pranta, Rezaul Haque, S M Masfequier Rahman Swapno, Young-Im Cho, Mohamed S Abdallah","doi":"10.3390/bioengineering12060651","DOIUrl":null,"url":null,"abstract":"<p><p>Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we propose BreastSwinFedNetX, a federated learning (FL)-enabled ensemble system that combines four hierarchical variants of the Swin Transformer (Tiny, Small, Base, and Large) with a Random Forest (RF) meta-learner. By utilizing FL, our approach ensures collaborative model training across decentralized and institution-specific datasets while preserving data locality and preventing raw patient data exposure. The model exhibits strong generalization and performs exceptionally well across five benchmark datasets-BreakHis, BUSI, INbreast, CBIS-DDSM, and a Combined dataset-achieving an F1 score of 99.34% on BreakHis, a PR AUC of 98.89% on INbreast, and a Matthews Correlation Coefficient (MCC) of 99.61% on the Combined dataset. To enhance transparency and clinical adoption, we incorporate explainable AI (XAI) through Grad-CAM, which highlights class-discriminative features. Additionally, we deploy the model in a real-time web application that supports uncertainty-aware predictions and clinician interaction and ensures compliance with GDPR and HIPAA through secure federated deployment. Extensive ablation studies and paired statistical analyses further confirm the significance and robustness of each architectural component. By integrating transformer-based architectures, secure collaborative training, and explainable outputs, BreastSwinFedNetX provides a scalable and trustworthy AI solution for real-world breast cancer diagnostics.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Swin Transformer Ensemble with Explainable AI for Robust and Decentralized Breast Cancer Diagnosis.\",\"authors\":\"Md Redwan Ahmed, Hamdadur Rahman, Zishad Hossain Limon, Md Ismail Hossain Siddiqui, Mahbub Alam Khan, Al Shahriar Uddin Khondakar Pranta, Rezaul Haque, S M Masfequier Rahman Swapno, Young-Im Cho, Mohamed S Abdallah\",\"doi\":\"10.3390/bioengineering12060651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we propose BreastSwinFedNetX, a federated learning (FL)-enabled ensemble system that combines four hierarchical variants of the Swin Transformer (Tiny, Small, Base, and Large) with a Random Forest (RF) meta-learner. By utilizing FL, our approach ensures collaborative model training across decentralized and institution-specific datasets while preserving data locality and preventing raw patient data exposure. The model exhibits strong generalization and performs exceptionally well across five benchmark datasets-BreakHis, BUSI, INbreast, CBIS-DDSM, and a Combined dataset-achieving an F1 score of 99.34% on BreakHis, a PR AUC of 98.89% on INbreast, and a Matthews Correlation Coefficient (MCC) of 99.61% on the Combined dataset. To enhance transparency and clinical adoption, we incorporate explainable AI (XAI) through Grad-CAM, which highlights class-discriminative features. Additionally, we deploy the model in a real-time web application that supports uncertainty-aware predictions and clinician interaction and ensures compliance with GDPR and HIPAA through secure federated deployment. Extensive ablation studies and paired statistical analyses further confirm the significance and robustness of each architectural component. By integrating transformer-based architectures, secure collaborative training, and explainable outputs, BreastSwinFedNetX provides a scalable and trustworthy AI solution for real-world breast cancer diagnostics.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060651\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060651","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hierarchical Swin Transformer Ensemble with Explainable AI for Robust and Decentralized Breast Cancer Diagnosis.
Early and accurate detection of breast cancer is essential for reducing mortality rates and improving clinical outcomes. However, deep learning (DL) models used in healthcare face significant challenges, including concerns about data privacy, domain-specific overfitting, and limited interpretability. To address these issues, we propose BreastSwinFedNetX, a federated learning (FL)-enabled ensemble system that combines four hierarchical variants of the Swin Transformer (Tiny, Small, Base, and Large) with a Random Forest (RF) meta-learner. By utilizing FL, our approach ensures collaborative model training across decentralized and institution-specific datasets while preserving data locality and preventing raw patient data exposure. The model exhibits strong generalization and performs exceptionally well across five benchmark datasets-BreakHis, BUSI, INbreast, CBIS-DDSM, and a Combined dataset-achieving an F1 score of 99.34% on BreakHis, a PR AUC of 98.89% on INbreast, and a Matthews Correlation Coefficient (MCC) of 99.61% on the Combined dataset. To enhance transparency and clinical adoption, we incorporate explainable AI (XAI) through Grad-CAM, which highlights class-discriminative features. Additionally, we deploy the model in a real-time web application that supports uncertainty-aware predictions and clinician interaction and ensures compliance with GDPR and HIPAA through secure federated deployment. Extensive ablation studies and paired statistical analyses further confirm the significance and robustness of each architectural component. By integrating transformer-based architectures, secure collaborative training, and explainable outputs, BreastSwinFedNetX provides a scalable and trustworthy AI solution for real-world breast cancer diagnostics.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering