GCSA-SegFormer:基于变压器的肝脏肿瘤病理图像分割。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Jingbin Wen, Sihua Yang, Weiqi Li, Shuqun Cheng
{"title":"GCSA-SegFormer:基于变压器的肝脏肿瘤病理图像分割。","authors":"Jingbin Wen, Sihua Yang, Weiqi Li, Shuqun Cheng","doi":"10.3390/bioengineering12060611","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological images are crucial for tumor diagnosis; however, due to their extremely high resolution, pathologists often spend considerable time and effort analyzing them. Moreover, diagnostic outcomes can be significantly influenced by subjective judgment. With the rapid advancement of artificial intelligence technologies, deep learning models offer new possibilities for pathological image diagnostics, enabling pathologists to diagnose more quickly, accurately, and reliably, thereby improving work efficiency. This paper proposes a novel Global Channel Spatial Attention (GCSA) module aimed at enhancing the representational capability of input feature maps. The module combines channel attention, channel shuffling, and spatial attention to capture global dependencies within feature maps. By integrating the GCSA module into the SegFormer architecture, the network, named GCSA-SegFormer, can more accurately capture global information and detailed features in complex scenarios. The proposed network was evaluated on a liver dataset and the publicly available ICIAR 2018 BACH dataset. On the liver dataset, the GCSA-SegFormer achieved a 1.12% increase in MIoU and a 1.15% increase in MPA compared to baseline models. On the BACH dataset, it improved MIoU by 1.26% and MPA by 0.39% compared to baseline models. Additionally, the performance metrics of this network were compared with seven different types of semantic segmentation, showing good results in all comparisons.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189456/pdf/","citationCount":"0","resultStr":"{\"title\":\"GCSA-SegFormer: Transformer-Based Segmentation for Liver Tumor Pathological Images.\",\"authors\":\"Jingbin Wen, Sihua Yang, Weiqi Li, Shuqun Cheng\",\"doi\":\"10.3390/bioengineering12060611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathological images are crucial for tumor diagnosis; however, due to their extremely high resolution, pathologists often spend considerable time and effort analyzing them. Moreover, diagnostic outcomes can be significantly influenced by subjective judgment. With the rapid advancement of artificial intelligence technologies, deep learning models offer new possibilities for pathological image diagnostics, enabling pathologists to diagnose more quickly, accurately, and reliably, thereby improving work efficiency. This paper proposes a novel Global Channel Spatial Attention (GCSA) module aimed at enhancing the representational capability of input feature maps. The module combines channel attention, channel shuffling, and spatial attention to capture global dependencies within feature maps. By integrating the GCSA module into the SegFormer architecture, the network, named GCSA-SegFormer, can more accurately capture global information and detailed features in complex scenarios. The proposed network was evaluated on a liver dataset and the publicly available ICIAR 2018 BACH dataset. On the liver dataset, the GCSA-SegFormer achieved a 1.12% increase in MIoU and a 1.15% increase in MPA compared to baseline models. On the BACH dataset, it improved MIoU by 1.26% and MPA by 0.39% compared to baseline models. Additionally, the performance metrics of this network were compared with seven different types of semantic segmentation, showing good results in all comparisons.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060611\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060611","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

病理图像对肿瘤的诊断至关重要;然而,由于它们的分辨率极高,病理学家经常花费大量的时间和精力来分析它们。此外,诊断结果会受到主观判断的显著影响。随着人工智能技术的快速发展,深度学习模型为病理图像诊断提供了新的可能性,使病理学家能够更快、更准确、更可靠地进行诊断,从而提高工作效率。本文提出了一种新的全局通道空间注意(GCSA)模块,旨在提高输入特征映射的表示能力。该模块结合了通道注意、通道变换和空间注意来捕获特征映射中的全局依赖关系。通过将GCSA模块集成到SegFormer架构中,GCSA-SegFormer网络可以更准确地捕获复杂场景中的全局信息和详细特征。该网络在肝脏数据集和公开可用的ICIAR 2018 BACH数据集上进行了评估。在肝脏数据集上,与基线模型相比,GCSA-SegFormer的MIoU增加了1.12%,MPA增加了1.15%。在BACH数据集上,与基线模型相比,MIoU提高了1.26%,MPA提高了0.39%。此外,将该网络的性能指标与七种不同类型的语义分割进行了比较,在所有比较中都显示出良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GCSA-SegFormer: Transformer-Based Segmentation for Liver Tumor Pathological Images.

Pathological images are crucial for tumor diagnosis; however, due to their extremely high resolution, pathologists often spend considerable time and effort analyzing them. Moreover, diagnostic outcomes can be significantly influenced by subjective judgment. With the rapid advancement of artificial intelligence technologies, deep learning models offer new possibilities for pathological image diagnostics, enabling pathologists to diagnose more quickly, accurately, and reliably, thereby improving work efficiency. This paper proposes a novel Global Channel Spatial Attention (GCSA) module aimed at enhancing the representational capability of input feature maps. The module combines channel attention, channel shuffling, and spatial attention to capture global dependencies within feature maps. By integrating the GCSA module into the SegFormer architecture, the network, named GCSA-SegFormer, can more accurately capture global information and detailed features in complex scenarios. The proposed network was evaluated on a liver dataset and the publicly available ICIAR 2018 BACH dataset. On the liver dataset, the GCSA-SegFormer achieved a 1.12% increase in MIoU and a 1.15% increase in MPA compared to baseline models. On the BACH dataset, it improved MIoU by 1.26% and MPA by 0.39% compared to baseline models. Additionally, the performance metrics of this network were compared with seven different types of semantic segmentation, showing good results in all comparisons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信