Rickelmi Agüero-Quiñones, Magaly De La Cruz-Noriega, Walter Rojas-Villacorta
{"title":"微生物燃料电池(MFCs)中小球藻(Chlorella sp.)微藻生物量的电势。","authors":"Rickelmi Agüero-Quiñones, Magaly De La Cruz-Noriega, Walter Rojas-Villacorta","doi":"10.3390/bioengineering12060635","DOIUrl":null,"url":null,"abstract":"<p><p>The projected global energy demand for 2050 drives the imperative search for alternative and environmentally friendly energy sources. An emerging and promising alternative is microbial fuel cells assisted with microalgae. This research evaluated the potential of <i>Chlorella</i> sp. biomass in electricity production using microbial fuel cells (MFCs) with a single chamber and activated carbon and zinc electrodes at the laboratory scale over 20 days of operation. Maximum values of voltage (1271 ± 2.52 mV), current (4.77 ± 0.02 mA), power density (247.514 mW/cm<sup>2</sup>), current density (0.551 mA/cm<sup>2</sup>), and internal resistance (200.83 ± 0.327 Ω) were obtained. The biomass-maintained pH values of 7.32 ± 0.03-7.74 ± 0.02 and peaks of electrical conductivity of 2450 ± 17.1 µS/cm and oxidation-reduction potential of 952 ± 20 mV were reached. Meanwhile, cell density and absorbance increased to average values of 2.2933 × 10<sup>7</sup> ± 1.15 × 10<sup>6</sup> cells/mL and 3.471 ± 0.195 absorbance units (AU), respectively. Scanning electron microscopy micrographs allowed the observation of filamentous structures of the formed biofilm attached to carbon particles, and energy-dispersive X-ray spectroscopy spectra of the anodes determined the predominance of oxygen, carbon, silicon, aluminum, and iron. Finally, this research demonstrates the great potential of <i>Chlorella</i> sp. biomass for sustainable bioelectricity generation in MFCs.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189246/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electric Potential of <i>Chlorella</i> sp. Microalgae Biomass in Microbial Fuel Cells (MFCs).\",\"authors\":\"Rickelmi Agüero-Quiñones, Magaly De La Cruz-Noriega, Walter Rojas-Villacorta\",\"doi\":\"10.3390/bioengineering12060635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The projected global energy demand for 2050 drives the imperative search for alternative and environmentally friendly energy sources. An emerging and promising alternative is microbial fuel cells assisted with microalgae. This research evaluated the potential of <i>Chlorella</i> sp. biomass in electricity production using microbial fuel cells (MFCs) with a single chamber and activated carbon and zinc electrodes at the laboratory scale over 20 days of operation. Maximum values of voltage (1271 ± 2.52 mV), current (4.77 ± 0.02 mA), power density (247.514 mW/cm<sup>2</sup>), current density (0.551 mA/cm<sup>2</sup>), and internal resistance (200.83 ± 0.327 Ω) were obtained. The biomass-maintained pH values of 7.32 ± 0.03-7.74 ± 0.02 and peaks of electrical conductivity of 2450 ± 17.1 µS/cm and oxidation-reduction potential of 952 ± 20 mV were reached. Meanwhile, cell density and absorbance increased to average values of 2.2933 × 10<sup>7</sup> ± 1.15 × 10<sup>6</sup> cells/mL and 3.471 ± 0.195 absorbance units (AU), respectively. Scanning electron microscopy micrographs allowed the observation of filamentous structures of the formed biofilm attached to carbon particles, and energy-dispersive X-ray spectroscopy spectra of the anodes determined the predominance of oxygen, carbon, silicon, aluminum, and iron. Finally, this research demonstrates the great potential of <i>Chlorella</i> sp. biomass for sustainable bioelectricity generation in MFCs.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189246/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060635\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060635","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Electric Potential of Chlorella sp. Microalgae Biomass in Microbial Fuel Cells (MFCs).
The projected global energy demand for 2050 drives the imperative search for alternative and environmentally friendly energy sources. An emerging and promising alternative is microbial fuel cells assisted with microalgae. This research evaluated the potential of Chlorella sp. biomass in electricity production using microbial fuel cells (MFCs) with a single chamber and activated carbon and zinc electrodes at the laboratory scale over 20 days of operation. Maximum values of voltage (1271 ± 2.52 mV), current (4.77 ± 0.02 mA), power density (247.514 mW/cm2), current density (0.551 mA/cm2), and internal resistance (200.83 ± 0.327 Ω) were obtained. The biomass-maintained pH values of 7.32 ± 0.03-7.74 ± 0.02 and peaks of electrical conductivity of 2450 ± 17.1 µS/cm and oxidation-reduction potential of 952 ± 20 mV were reached. Meanwhile, cell density and absorbance increased to average values of 2.2933 × 107 ± 1.15 × 106 cells/mL and 3.471 ± 0.195 absorbance units (AU), respectively. Scanning electron microscopy micrographs allowed the observation of filamentous structures of the formed biofilm attached to carbon particles, and energy-dispersive X-ray spectroscopy spectra of the anodes determined the predominance of oxygen, carbon, silicon, aluminum, and iron. Finally, this research demonstrates the great potential of Chlorella sp. biomass for sustainable bioelectricity generation in MFCs.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering