Benjamin A Clegg, Samuel Perry, Enrico De Pieri, Anthony C Redmond, Stephen J Ferguson, David E Lunn, Richard M Hall, Michael G Bryant, Nazanin Emami, Andrew R Beadling
{"title":"患者日常生活活动产生的生理负荷对金属对聚合物全髋关节置换术磨损的影响。","authors":"Benjamin A Clegg, Samuel Perry, Enrico De Pieri, Anthony C Redmond, Stephen J Ferguson, David E Lunn, Richard M Hall, Michael G Bryant, Nazanin Emami, Andrew R Beadling","doi":"10.3390/bioengineering12060663","DOIUrl":null,"url":null,"abstract":"<p><p>The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically relevant loading conditions. Previous studies have incorporated activities of daily living (ADLs) such as walking, jogging and stair negotiation into wear simulations. However, these studies primarily used simplified adaptations that increased axial forces and applied accelerated sinusoidal waveforms, rather than fully replicating the complex kinematics experienced by THR patients. To address this gap, this study applied patient-derived ADL profiles-jogging and stair negotiation-using a three-station hip simulator, obtained through 3D motion analysis of total hip arthroplasty patients, processed via a musculoskeletal multibody modelling approach to derive realistic hip contact forces (HCFs). The results indicate that jogging significantly increased wear rates compared to the ISO walking gait waveform, with wear increasing from 15.24 ± 0.55 to 28.68 ± 0.87 mm<sup>3</sup>/Mc. Additionally, wear was highly sensitive to changes in lubricant protein concentration, with an increase from 17 g/L to 30 g/L reducing wear by over 60%. Contrary to predictive models, stair descent resulted in higher volumetric wear (8.62 ± 0.43 mm<sup>3</sup>/0.5 Mc) compared to stair ascent (4.15 ± 0.31 mm<sup>3</sup>/0.5 Mc), despite both profiles having similar peak torques. These findings underscore the limitations of current ISO standards in replicating physiologically relevant wear patterns. The application of patient-specific loading profiles highlights the need to integrate ADLs into pre-clinical testing protocols, ensuring a more accurate assessment of implant performance and longevity.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189450/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements.\",\"authors\":\"Benjamin A Clegg, Samuel Perry, Enrico De Pieri, Anthony C Redmond, Stephen J Ferguson, David E Lunn, Richard M Hall, Michael G Bryant, Nazanin Emami, Andrew R Beadling\",\"doi\":\"10.3390/bioengineering12060663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically relevant loading conditions. Previous studies have incorporated activities of daily living (ADLs) such as walking, jogging and stair negotiation into wear simulations. However, these studies primarily used simplified adaptations that increased axial forces and applied accelerated sinusoidal waveforms, rather than fully replicating the complex kinematics experienced by THR patients. To address this gap, this study applied patient-derived ADL profiles-jogging and stair negotiation-using a three-station hip simulator, obtained through 3D motion analysis of total hip arthroplasty patients, processed via a musculoskeletal multibody modelling approach to derive realistic hip contact forces (HCFs). The results indicate that jogging significantly increased wear rates compared to the ISO walking gait waveform, with wear increasing from 15.24 ± 0.55 to 28.68 ± 0.87 mm<sup>3</sup>/Mc. Additionally, wear was highly sensitive to changes in lubricant protein concentration, with an increase from 17 g/L to 30 g/L reducing wear by over 60%. Contrary to predictive models, stair descent resulted in higher volumetric wear (8.62 ± 0.43 mm<sup>3</sup>/0.5 Mc) compared to stair ascent (4.15 ± 0.31 mm<sup>3</sup>/0.5 Mc), despite both profiles having similar peak torques. These findings underscore the limitations of current ISO standards in replicating physiologically relevant wear patterns. The application of patient-specific loading profiles highlights the need to integrate ADLs into pre-clinical testing protocols, ensuring a more accurate assessment of implant performance and longevity.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060663\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060663","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effects of Physiological Loading from Patient-Derived Activities of Daily Living on the Wear of Metal-on-Polymer Total Hip Replacements.
The current pre-clinical testing standards for total hip replacements (THRs), ISO standards, use simplified loading waveforms that do not fully replicate real-world biomechanics. These standards provide a benchmark of data that may not accurately predict in vivo wear, necessitating the evaluation of physiologically relevant loading conditions. Previous studies have incorporated activities of daily living (ADLs) such as walking, jogging and stair negotiation into wear simulations. However, these studies primarily used simplified adaptations that increased axial forces and applied accelerated sinusoidal waveforms, rather than fully replicating the complex kinematics experienced by THR patients. To address this gap, this study applied patient-derived ADL profiles-jogging and stair negotiation-using a three-station hip simulator, obtained through 3D motion analysis of total hip arthroplasty patients, processed via a musculoskeletal multibody modelling approach to derive realistic hip contact forces (HCFs). The results indicate that jogging significantly increased wear rates compared to the ISO walking gait waveform, with wear increasing from 15.24 ± 0.55 to 28.68 ± 0.87 mm3/Mc. Additionally, wear was highly sensitive to changes in lubricant protein concentration, with an increase from 17 g/L to 30 g/L reducing wear by over 60%. Contrary to predictive models, stair descent resulted in higher volumetric wear (8.62 ± 0.43 mm3/0.5 Mc) compared to stair ascent (4.15 ± 0.31 mm3/0.5 Mc), despite both profiles having similar peak torques. These findings underscore the limitations of current ISO standards in replicating physiologically relevant wear patterns. The application of patient-specific loading profiles highlights the need to integrate ADLs into pre-clinical testing protocols, ensuring a more accurate assessment of implant performance and longevity.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering