Lina Bunketorp Käll, Gudni Rafn Harðarson, Erik Tullin, Ann-Sofi Lamberg, Roy Tranberg, Johanna Wangdell
{"title":"开发和评估一个3D运动捕捉模型的上肢运动期间轮椅操纵的脊髓损伤的个人:一项试点研究。","authors":"Lina Bunketorp Käll, Gudni Rafn Harðarson, Erik Tullin, Ann-Sofi Lamberg, Roy Tranberg, Johanna Wangdell","doi":"10.3390/bioengineering12060648","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) often necessitates the use of a manual wheelchair, which can overload the shoulders and contribute to upper extremity (UE) pain. Currently, no standardized methods exist to assess UE kinematics during wheelchair propulsion. This study aimed to develop and evaluate a marker-based motion capture model for analyzing UE movement during wheelchair use, with a secondary goal of assessing test-retest reliability. The study was conducted in two phases: (1) development of the motion analysis model and (2) reliability testing. Eleven participants with SCI were included. Reliability was assessed using intraclass correlation coefficients (ICCs) across 15 movement parameters, including total range of motion and minimum and maximum movement values. The model demonstrated good test-retest reliability. For minimum movement, 12 of 15 parameters were significant (ICC = 0.681-0.965). For maximum movement, 13 of 15 were significant (ICC = 0.726-0.981). For total range of motion, 12 of 15 showed significant reliability (ICC = 0.596-0.952). In conclusion, the motion capture model showed promising reliability for assessing UE kinematics during wheelchair maneuvering in individuals with SCI. However, due to the small sample size, further research is needed to validate and refine the model.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190051/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Evaluation of a 3D Motion Capture Model for Upper Extremity Kinematics During Wheelchair Maneuvering in Individuals with Spinal Cord Injuries: A Pilot Study.\",\"authors\":\"Lina Bunketorp Käll, Gudni Rafn Harðarson, Erik Tullin, Ann-Sofi Lamberg, Roy Tranberg, Johanna Wangdell\",\"doi\":\"10.3390/bioengineering12060648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) often necessitates the use of a manual wheelchair, which can overload the shoulders and contribute to upper extremity (UE) pain. Currently, no standardized methods exist to assess UE kinematics during wheelchair propulsion. This study aimed to develop and evaluate a marker-based motion capture model for analyzing UE movement during wheelchair use, with a secondary goal of assessing test-retest reliability. The study was conducted in two phases: (1) development of the motion analysis model and (2) reliability testing. Eleven participants with SCI were included. Reliability was assessed using intraclass correlation coefficients (ICCs) across 15 movement parameters, including total range of motion and minimum and maximum movement values. The model demonstrated good test-retest reliability. For minimum movement, 12 of 15 parameters were significant (ICC = 0.681-0.965). For maximum movement, 13 of 15 were significant (ICC = 0.726-0.981). For total range of motion, 12 of 15 showed significant reliability (ICC = 0.596-0.952). In conclusion, the motion capture model showed promising reliability for assessing UE kinematics during wheelchair maneuvering in individuals with SCI. However, due to the small sample size, further research is needed to validate and refine the model.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190051/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060648\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060648","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development and Evaluation of a 3D Motion Capture Model for Upper Extremity Kinematics During Wheelchair Maneuvering in Individuals with Spinal Cord Injuries: A Pilot Study.
Spinal cord injury (SCI) often necessitates the use of a manual wheelchair, which can overload the shoulders and contribute to upper extremity (UE) pain. Currently, no standardized methods exist to assess UE kinematics during wheelchair propulsion. This study aimed to develop and evaluate a marker-based motion capture model for analyzing UE movement during wheelchair use, with a secondary goal of assessing test-retest reliability. The study was conducted in two phases: (1) development of the motion analysis model and (2) reliability testing. Eleven participants with SCI were included. Reliability was assessed using intraclass correlation coefficients (ICCs) across 15 movement parameters, including total range of motion and minimum and maximum movement values. The model demonstrated good test-retest reliability. For minimum movement, 12 of 15 parameters were significant (ICC = 0.681-0.965). For maximum movement, 13 of 15 were significant (ICC = 0.726-0.981). For total range of motion, 12 of 15 showed significant reliability (ICC = 0.596-0.952). In conclusion, the motion capture model showed promising reliability for assessing UE kinematics during wheelchair maneuvering in individuals with SCI. However, due to the small sample size, further research is needed to validate and refine the model.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering