基于持久同源特征提取和改进effentnet的群体二分类。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Zumin Wang, Ke Yang, Jie Tang, Jun Gao, Yuhao Zhang, Wei Xu, Chun-Ming Huang
{"title":"基于持久同源特征提取和改进effentnet的群体二分类。","authors":"Zumin Wang, Ke Yang, Jie Tang, Jun Gao, Yuhao Zhang, Wei Xu, Chun-Ming Huang","doi":"10.3390/bioengineering12060625","DOIUrl":null,"url":null,"abstract":"<p><p>Classifying newly formed colonies is instrumental in uncovering sources of infection and enabling precision medicine, holding significant clinical value. However, due to the ambiguous features of early-stage colony images in culture dishes, conventional computer vision (CV) classification algorithms are often ineffective. To achieve accurate and efficient colony classification, this paper proposes a high-precision method based on Persistent Homology (PH) and an improved EfficientNet. Specifically, (1) a PH feature extraction algorithm is applied to Candida albicans (CA) and Staphylococcus epidermidis (SE) colonies cultured for 18 h in Petri dishes to capture their topological information. (2) The Mobile Inverted Bottleneck Convolution (MBConv) module in EfficientNet is modified, enhancing the attention mechanism to better handle local small targets. (3) A novel self-attention mechanism named the Spatial and Contextual Transformer (SCoT), which is introduced to process information at multiple scales, increasing the resolution in orthogonal directions of the image and the aggregation capability of feature maps. The proposed approach achieves a high accuracy of 98.64%, a 10.29% improvement over the original classification model. The research findings indicate that this method can effectively classify colonies with high efficiency.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190165/pdf/","citationCount":"0","resultStr":"{\"title\":\"Colony Binary Classification Based on Persistent Homology Feature Extraction and Improved EfficientNet.\",\"authors\":\"Zumin Wang, Ke Yang, Jie Tang, Jun Gao, Yuhao Zhang, Wei Xu, Chun-Ming Huang\",\"doi\":\"10.3390/bioengineering12060625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Classifying newly formed colonies is instrumental in uncovering sources of infection and enabling precision medicine, holding significant clinical value. However, due to the ambiguous features of early-stage colony images in culture dishes, conventional computer vision (CV) classification algorithms are often ineffective. To achieve accurate and efficient colony classification, this paper proposes a high-precision method based on Persistent Homology (PH) and an improved EfficientNet. Specifically, (1) a PH feature extraction algorithm is applied to Candida albicans (CA) and Staphylococcus epidermidis (SE) colonies cultured for 18 h in Petri dishes to capture their topological information. (2) The Mobile Inverted Bottleneck Convolution (MBConv) module in EfficientNet is modified, enhancing the attention mechanism to better handle local small targets. (3) A novel self-attention mechanism named the Spatial and Contextual Transformer (SCoT), which is introduced to process information at multiple scales, increasing the resolution in orthogonal directions of the image and the aggregation capability of feature maps. The proposed approach achieves a high accuracy of 98.64%, a 10.29% improvement over the original classification model. The research findings indicate that this method can effectively classify colonies with high efficiency.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060625\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060625","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

对新形成的菌落进行分类,有助于发现感染源,实现精准医疗,具有重要的临床价值。然而,由于培养皿中早期菌落图像的模糊特征,传统的计算机视觉(CV)分类算法往往是无效的。为了实现准确高效的群体分类,本文提出了一种基于持久同源性(Persistent Homology, PH)和改进的effentnet的高精度群体分类方法。具体而言,(1)采用PH特征提取算法对白色念珠菌(CA)和表皮葡萄球菌(SE)菌落在培养皿中培养18 h,获取其拓扑信息。(2)改进了EfficientNet中的移动倒瓶颈卷积(MBConv)模块,增强了注意机制,更好地处理局部小目标。(3)提出了一种新的自关注机制——空间与上下文转换器(SCoT),用于多尺度信息处理,提高了图像正交方向的分辨率和特征图的聚合能力。该方法达到了98.64%的准确率,比原分类模型提高了10.29%。研究结果表明,该方法能有效、高效地对菌落进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Colony Binary Classification Based on Persistent Homology Feature Extraction and Improved EfficientNet.

Classifying newly formed colonies is instrumental in uncovering sources of infection and enabling precision medicine, holding significant clinical value. However, due to the ambiguous features of early-stage colony images in culture dishes, conventional computer vision (CV) classification algorithms are often ineffective. To achieve accurate and efficient colony classification, this paper proposes a high-precision method based on Persistent Homology (PH) and an improved EfficientNet. Specifically, (1) a PH feature extraction algorithm is applied to Candida albicans (CA) and Staphylococcus epidermidis (SE) colonies cultured for 18 h in Petri dishes to capture their topological information. (2) The Mobile Inverted Bottleneck Convolution (MBConv) module in EfficientNet is modified, enhancing the attention mechanism to better handle local small targets. (3) A novel self-attention mechanism named the Spatial and Contextual Transformer (SCoT), which is introduced to process information at multiple scales, increasing the resolution in orthogonal directions of the image and the aggregation capability of feature maps. The proposed approach achieves a high accuracy of 98.64%, a 10.29% improvement over the original classification model. The research findings indicate that this method can effectively classify colonies with high efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信