Tasneem Halhouli, Lisa Münchhalfen, Sarkawt Hamad, Larissa Schmitz-Ullrich, Frank Nitsche, Felix Gaedke, Astrid Schauss, Linlin Zhang, Quoc-Khanh Pham, Gang Bao, Kurt Paul Pfannkuche
{"title":"基于细胞的治疗:铁磁与超顺磁细胞靶向。","authors":"Tasneem Halhouli, Lisa Münchhalfen, Sarkawt Hamad, Larissa Schmitz-Ullrich, Frank Nitsche, Felix Gaedke, Astrid Schauss, Linlin Zhang, Quoc-Khanh Pham, Gang Bao, Kurt Paul Pfannkuche","doi":"10.3390/bioengineering12060657","DOIUrl":null,"url":null,"abstract":"<p><p>Stem-cell-based therapies rely on the transplantation of stem cells or stem-cell-derived organotypic cells into injured tissues in order to improve or restore tissue function that has been impaired by various diseases. The potential of induced pluripotent stem cells has created many applications in the field of cell therapy, for example. Some applications, for example, those in cardiac cell therapy, suffer from low or very low efficiencies of cell engraftment. Therefore, magnetic cell targeting can be discussed as a method for capturing superparamagnetic nanoparticle-labelled cells in the tissue. Here, we employ superparamagnetic iron oxide nanoparticles (SPIONs) for the intracellular magnetic loading of mesenchymal stem cells (MSCs). In addition, we test a novel strategy of labelling MSCs with ferromagnetic particles. The adhesion assays demonstrate a faster adhesion kinetic of SPIONs-loaded MSC spheroids when a magnetic field was applied, resulting in >50% spheroid adhesion after 30 min. Clustering of cells inside the magnetic field is a second potential mechanism of magnetic cell retention and >80% of cells were found to be aggregated in clusters when placed in a magnetic field for 10 min. SPIONs-loaded and ferromagnetic-particle-loaded cells performed equally in the cell clustering assay. In conclusion, the clustering of SPION-labelled cells explains the observation that magnetic targeting reaches maximal efficiency in vivo after only 10 min of magnetic field application. This has significant implications for magnetic-targeting-assisted stem cell and cell replacement therapies.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189464/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell-Based Therapies: Ferromagnetic Versus Superparamagnetic Cell Targeting.\",\"authors\":\"Tasneem Halhouli, Lisa Münchhalfen, Sarkawt Hamad, Larissa Schmitz-Ullrich, Frank Nitsche, Felix Gaedke, Astrid Schauss, Linlin Zhang, Quoc-Khanh Pham, Gang Bao, Kurt Paul Pfannkuche\",\"doi\":\"10.3390/bioengineering12060657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem-cell-based therapies rely on the transplantation of stem cells or stem-cell-derived organotypic cells into injured tissues in order to improve or restore tissue function that has been impaired by various diseases. The potential of induced pluripotent stem cells has created many applications in the field of cell therapy, for example. Some applications, for example, those in cardiac cell therapy, suffer from low or very low efficiencies of cell engraftment. Therefore, magnetic cell targeting can be discussed as a method for capturing superparamagnetic nanoparticle-labelled cells in the tissue. Here, we employ superparamagnetic iron oxide nanoparticles (SPIONs) for the intracellular magnetic loading of mesenchymal stem cells (MSCs). In addition, we test a novel strategy of labelling MSCs with ferromagnetic particles. The adhesion assays demonstrate a faster adhesion kinetic of SPIONs-loaded MSC spheroids when a magnetic field was applied, resulting in >50% spheroid adhesion after 30 min. Clustering of cells inside the magnetic field is a second potential mechanism of magnetic cell retention and >80% of cells were found to be aggregated in clusters when placed in a magnetic field for 10 min. SPIONs-loaded and ferromagnetic-particle-loaded cells performed equally in the cell clustering assay. In conclusion, the clustering of SPION-labelled cells explains the observation that magnetic targeting reaches maximal efficiency in vivo after only 10 min of magnetic field application. This has significant implications for magnetic-targeting-assisted stem cell and cell replacement therapies.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189464/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060657\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060657","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Cell-Based Therapies: Ferromagnetic Versus Superparamagnetic Cell Targeting.
Stem-cell-based therapies rely on the transplantation of stem cells or stem-cell-derived organotypic cells into injured tissues in order to improve or restore tissue function that has been impaired by various diseases. The potential of induced pluripotent stem cells has created many applications in the field of cell therapy, for example. Some applications, for example, those in cardiac cell therapy, suffer from low or very low efficiencies of cell engraftment. Therefore, magnetic cell targeting can be discussed as a method for capturing superparamagnetic nanoparticle-labelled cells in the tissue. Here, we employ superparamagnetic iron oxide nanoparticles (SPIONs) for the intracellular magnetic loading of mesenchymal stem cells (MSCs). In addition, we test a novel strategy of labelling MSCs with ferromagnetic particles. The adhesion assays demonstrate a faster adhesion kinetic of SPIONs-loaded MSC spheroids when a magnetic field was applied, resulting in >50% spheroid adhesion after 30 min. Clustering of cells inside the magnetic field is a second potential mechanism of magnetic cell retention and >80% of cells were found to be aggregated in clusters when placed in a magnetic field for 10 min. SPIONs-loaded and ferromagnetic-particle-loaded cells performed equally in the cell clustering assay. In conclusion, the clustering of SPION-labelled cells explains the observation that magnetic targeting reaches maximal efficiency in vivo after only 10 min of magnetic field application. This has significant implications for magnetic-targeting-assisted stem cell and cell replacement therapies.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering