解剖特征预测对经颅直流电刺激(tDCS)的反应:优化tDCS方案的计算管道的发展。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Giulia Caiani, Emma Chiaramello, Marta Parazzini, Eleonora Arrigoni, Leonor J Romero Lauro, Alberto Pisoni, Serena Fiocchi
{"title":"解剖特征预测对经颅直流电刺激(tDCS)的反应:优化tDCS方案的计算管道的发展。","authors":"Giulia Caiani, Emma Chiaramello, Marta Parazzini, Eleonora Arrigoni, Leonor J Romero Lauro, Alberto Pisoni, Serena Fiocchi","doi":"10.3390/bioengineering12060656","DOIUrl":null,"url":null,"abstract":"<p><p>Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique promisingly used to treat neurological and psychological disorders. Nevertheless, the inter-subject heterogeneity in its after-effects frequently limits its efficacy. This can be attributed to fixed-dose methods, which do not consider inter-subject anatomical variations. This work attempts to overcome this constraint by examining the effects of age and anatomical features, including the volume of cerebrospinal fluid (CSF), the thickness of the skull, and the composition of brain tissue, on electric field distribution and cortical excitability. A computational approach was used to map the electric field distribution over the brain tissues of realistic head models reconstructed from MRI images of twenty-three subjects, including adults and children of both genders. Significant negative correlations (<i>p</i> < 0.05) were found in the data between the maximum electric field strength and anatomical variable parameters. Furthermore, this study showed that the percentage of brain tissue exposed to an electric field amplitude above a pre-defined threshold (i.e., 0.227 V/m) was the main factor influencing the responsiveness to tDCS. In the end, the research suggests multiple regression models as useful tool to predict subjects' responsiveness and to support a personalized approach that tailors the injected current to the morphology of the patient.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189637/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anatomical Characteristics Predict Response to Transcranial Direct Current Stimulation (tDCS): Development of a Computational Pipeline for Optimizing tDCS Protocols.\",\"authors\":\"Giulia Caiani, Emma Chiaramello, Marta Parazzini, Eleonora Arrigoni, Leonor J Romero Lauro, Alberto Pisoni, Serena Fiocchi\",\"doi\":\"10.3390/bioengineering12060656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique promisingly used to treat neurological and psychological disorders. Nevertheless, the inter-subject heterogeneity in its after-effects frequently limits its efficacy. This can be attributed to fixed-dose methods, which do not consider inter-subject anatomical variations. This work attempts to overcome this constraint by examining the effects of age and anatomical features, including the volume of cerebrospinal fluid (CSF), the thickness of the skull, and the composition of brain tissue, on electric field distribution and cortical excitability. A computational approach was used to map the electric field distribution over the brain tissues of realistic head models reconstructed from MRI images of twenty-three subjects, including adults and children of both genders. Significant negative correlations (<i>p</i> < 0.05) were found in the data between the maximum electric field strength and anatomical variable parameters. Furthermore, this study showed that the percentage of brain tissue exposed to an electric field amplitude above a pre-defined threshold (i.e., 0.227 V/m) was the main factor influencing the responsiveness to tDCS. In the end, the research suggests multiple regression models as useful tool to predict subjects' responsiveness and to support a personalized approach that tailors the injected current to the morphology of the patient.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189637/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060656\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060656","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

经颅直流电刺激(tDCS)是一种无创脑刺激技术,有望用于治疗神经和心理疾病。然而,其后效的主体间异质性往往限制了其疗效。这可归因于固定剂量方法,它没有考虑受试者之间的解剖差异。这项工作试图通过检查年龄和解剖特征(包括脑脊液(CSF)的体积、头骨的厚度和脑组织的组成)对电场分布和皮层兴奋性的影响来克服这一限制。研究人员利用核磁共振成像(MRI)图像重建了23名成人和儿童的真实头部模型,并利用计算方法绘制了这些模型脑组织上的电场分布图。最大电场强度与解剖变量参数呈显著负相关(p < 0.05)。此外,本研究表明,暴露于电场振幅高于预设阈值(即0.227 V/m)的脑组织百分比是影响tDCS反应性的主要因素。最后,研究表明,多元回归模型是预测受试者反应性的有用工具,并支持个性化的方法,根据患者的形态调整注射电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anatomical Characteristics Predict Response to Transcranial Direct Current Stimulation (tDCS): Development of a Computational Pipeline for Optimizing tDCS Protocols.

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique promisingly used to treat neurological and psychological disorders. Nevertheless, the inter-subject heterogeneity in its after-effects frequently limits its efficacy. This can be attributed to fixed-dose methods, which do not consider inter-subject anatomical variations. This work attempts to overcome this constraint by examining the effects of age and anatomical features, including the volume of cerebrospinal fluid (CSF), the thickness of the skull, and the composition of brain tissue, on electric field distribution and cortical excitability. A computational approach was used to map the electric field distribution over the brain tissues of realistic head models reconstructed from MRI images of twenty-three subjects, including adults and children of both genders. Significant negative correlations (p < 0.05) were found in the data between the maximum electric field strength and anatomical variable parameters. Furthermore, this study showed that the percentage of brain tissue exposed to an electric field amplitude above a pre-defined threshold (i.e., 0.227 V/m) was the main factor influencing the responsiveness to tDCS. In the end, the research suggests multiple regression models as useful tool to predict subjects' responsiveness and to support a personalized approach that tailors the injected current to the morphology of the patient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信