使用红外热成像检测乳腺癌:纹理分析和机器学习方法的综述。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Larry Ryan, Sos Agaian
{"title":"使用红外热成像检测乳腺癌:纹理分析和机器学习方法的综述。","authors":"Larry Ryan, Sos Agaian","doi":"10.3390/bioengineering12060639","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breast Cancer Detection Using Infrared Thermography: A Survey of Texture Analysis and Machine Learning Approaches.\",\"authors\":\"Larry Ryan, Sos Agaian\",\"doi\":\"10.3390/bioengineering12060639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060639\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌仍然是全世界妇女癌症相关死亡的主要原因,因此迫切需要及早发现。虽然乳房x光检查是金标准,但在资源有限的地区,它面临成本和可及性障碍。红外热成像技术是一种很有前途的低成本、无创、无痛、无辐射的替代方法,它通过热红外辐射测量肿瘤的热特征来检测肿瘤。然而,挑战仍然存在,包括有限的临床验证,缺乏食品和药物管理局(FDA)批准作为主要筛查工具,个体的生理差异,不同的解释标准,以及专业放射科医生的短缺。该调查独特地关注于将纹理分析和机器学习集成到红外热成像中用于乳腺癌检测,解决了现有的文献空白,并注意到这种方法取得了高水平的结果。它全面回顾了整个处理流程,从图像预处理和特征提取到分类和性能评估。该调查批判性地分析了当前的局限性,包括对DMR-IR等有限数据集的过度依赖。通过探索最新进展,本工作旨在减少放射科医生的工作量,提高诊断准确性,并确定这一不断发展的领域未来的关键研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breast Cancer Detection Using Infrared Thermography: A Survey of Texture Analysis and Machine Learning Approaches.

Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信