{"title":"使用红外热成像检测乳腺癌:纹理分析和机器学习方法的综述。","authors":"Larry Ryan, Sos Agaian","doi":"10.3390/bioengineering12060639","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Breast Cancer Detection Using Infrared Thermography: A Survey of Texture Analysis and Machine Learning Approaches.\",\"authors\":\"Larry Ryan, Sos Agaian\",\"doi\":\"10.3390/bioengineering12060639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060639\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060639","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Breast Cancer Detection Using Infrared Thermography: A Survey of Texture Analysis and Machine Learning Approaches.
Breast cancer remains a leading cause of cancer-related deaths among women worldwide, highlighting the urgent need for early detection. While mammography is the gold standard, it faces cost and accessibility barriers in resource-limited areas. Infrared thermography is a promising cost-effective, non-invasive, painless, and radiation-free alternative that detects tumors by measuring their thermal signatures through thermal infrared radiation. However, challenges persist, including limited clinical validation, lack of Food and Drug Administration (FDA) approval as a primary screening tool, physiological variations among individuals, differing interpretation standards, and a shortage of specialized radiologists. This survey uniquely focuses on integrating texture analysis and machine learning within infrared thermography for breast cancer detection, addressing the existing literature gaps, and noting that this approach achieves high-ranking results. It comprehensively reviews the entire processing pipeline, from image preprocessing and feature extraction to classification and performance assessment. The survey critically analyzes the current limitations, including over-reliance on limited datasets like DMR-IR. By exploring recent advancements, this work aims to reduce radiologists' workload, enhance diagnostic accuracy, and identify key future research directions in this evolving field.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering