Shiva Maleki Varnosfaderani, Mohd Rizwan Shaikh, Mohamad Forouzanfar
{"title":"智能车辆中不引人注目的生物传感:传感器、算法和集成挑战的综合综述。","authors":"Shiva Maleki Varnosfaderani, Mohd Rizwan Shaikh, Mohamad Forouzanfar","doi":"10.3390/bioengineering12060669","DOIUrl":null,"url":null,"abstract":"<p><p>Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers' health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189504/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.\",\"authors\":\"Shiva Maleki Varnosfaderani, Mohd Rizwan Shaikh, Mohamad Forouzanfar\",\"doi\":\"10.3390/bioengineering12060669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers' health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"12 6\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering12060669\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060669","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Comprehensive Review of Unobtrusive Biosensing in Intelligent Vehicles: Sensors, Algorithms, and Integration Challenges.
Unobtrusive in-vehicle measurement and the monitoring of physiological signals have recently attracted researchers in industry and academia as an innovative approach that can provide valuable information about drivers' health and status. The main goal is to reduce the number of traffic accidents caused by driver errors by monitoring various physiological parameters and devising appropriate actions to alert the driver or to take control of the vehicle. The research on this topic is in its early stages. While there have been several publications on this topic and industrial prototypes made by car manufacturers, a comprehensive and critical review of the current trends and future directions is missing. This review examines the current research and findings in in-vehicle physiological monitoring and suggests future directions and potential uses. Various physiological sensors, their potential locations, and the results they produce are demonstrated. The main challenges of in-vehicle biosensing, including unobtrusive sensing, vehicle vibration and driver movement cancellation, and privacy management, are discussed, and possible solutions are presented. The paper also reviews the current in-vehicle biosensing prototypes built by car manufacturers and other researchers. The reviewed methods and presented directions provide valuable insights into robust and accurate biosensing within vehicles for researchers in the field.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering