精子膜:生殖物种低温保存的分子意义和策略。

IF 2.7 2区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Animals Pub Date : 2025-06-19 DOI:10.3390/ani15121808
Macarena Castro, Karla Leal, Felipe Pezo, María José Contreras
{"title":"精子膜:生殖物种低温保存的分子意义和策略。","authors":"Macarena Castro, Karla Leal, Felipe Pezo, María José Contreras","doi":"10.3390/ani15121808","DOIUrl":null,"url":null,"abstract":"<p><p>Sperm cryopreservation is a fundamental reproductive biotechnology, enabling the long-term storage of genetic material and supporting assisted reproduction programs. Despite its widespread application, the process is associated with significant limitations due to the cryo-induced cellular damage that occurs during freezing and thawing. These injuries primarily affect the plasma membrane, nuclear DNA, and motility, thereby compromising the fertilizing potential of spermatozoa. Furthermore, interspecies variability in terms of cryo-sensitivity poses a major challenge to the development of standardized cryopreservation protocols. Recent advances have focused on mitigating cryodamage through the use of various strategies. The inclusion of antioxidants in cryopreservation media has proven effective in reducing oxidative stress, thereby enhancing cellular protection. Similarly, the addition of lipid-based supplements contributes to membrane stabilization, improving post-thaw sperm viability and functionality. Moreover, the application of omics technologies, such as transcriptomics and proteomics, has facilitated a deeper understanding of molecular damage and protective responses, paving the way for the development of tailored, species-specific protocols. These integrated approaches optimize cryopreservation conditions, maximizing post-thaw survival and the fertilizing capacity of sperm. Enhancing cryopreservation techniques not only improves the outcomes of assisted reproductive technologies, but also plays a crucial role in the conservation of genetically valuable livestock species. In conclusion, the integration of biotechnological and molecular tools holds significant promise for overcoming the current limitations and advancing the efficacy of sperm cryopreservation.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189332/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sperm Membrane: Molecular Implications and Strategies for Cryopreservation in Productive Species.\",\"authors\":\"Macarena Castro, Karla Leal, Felipe Pezo, María José Contreras\",\"doi\":\"10.3390/ani15121808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sperm cryopreservation is a fundamental reproductive biotechnology, enabling the long-term storage of genetic material and supporting assisted reproduction programs. Despite its widespread application, the process is associated with significant limitations due to the cryo-induced cellular damage that occurs during freezing and thawing. These injuries primarily affect the plasma membrane, nuclear DNA, and motility, thereby compromising the fertilizing potential of spermatozoa. Furthermore, interspecies variability in terms of cryo-sensitivity poses a major challenge to the development of standardized cryopreservation protocols. Recent advances have focused on mitigating cryodamage through the use of various strategies. The inclusion of antioxidants in cryopreservation media has proven effective in reducing oxidative stress, thereby enhancing cellular protection. Similarly, the addition of lipid-based supplements contributes to membrane stabilization, improving post-thaw sperm viability and functionality. Moreover, the application of omics technologies, such as transcriptomics and proteomics, has facilitated a deeper understanding of molecular damage and protective responses, paving the way for the development of tailored, species-specific protocols. These integrated approaches optimize cryopreservation conditions, maximizing post-thaw survival and the fertilizing capacity of sperm. Enhancing cryopreservation techniques not only improves the outcomes of assisted reproductive technologies, but also plays a crucial role in the conservation of genetically valuable livestock species. In conclusion, the integration of biotechnological and molecular tools holds significant promise for overcoming the current limitations and advancing the efficacy of sperm cryopreservation.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189332/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15121808\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15121808","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

精子冷冻保存是一项基本的生殖生物技术,能够长期储存遗传物质,支持辅助生殖计划。尽管其应用广泛,但由于在冷冻和解冻过程中发生的低温诱导的细胞损伤,该工艺存在显著的局限性。这些损伤主要影响质膜、核DNA和运动,从而损害精子的受精潜力。此外,物种间在低温敏感性方面的差异对标准化低温保存协议的发展提出了重大挑战。最近的进展集中在通过使用各种策略来减轻低温损伤。在冷冻保存介质中加入抗氧化剂已被证明能有效减少氧化应激,从而增强细胞保护。同样,添加基于脂质的补充剂有助于膜稳定,提高解冻后精子的生存能力和功能。此外,转录组学和蛋白质组学等组学技术的应用促进了对分子损伤和保护反应的更深入理解,为开发量身定制的物种特异性方案铺平了道路。这些综合方法优化冷冻保存条件,最大限度地提高解冻后精子的存活率和受精能力。加强低温保存技术不仅可以提高辅助生殖技术的效果,而且对遗传价值家畜物种的保护具有重要作用。综上所述,生物技术和分子技术的结合对于克服目前的局限性和提高精子冷冻保存的效果具有重要的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sperm Membrane: Molecular Implications and Strategies for Cryopreservation in Productive Species.

Sperm cryopreservation is a fundamental reproductive biotechnology, enabling the long-term storage of genetic material and supporting assisted reproduction programs. Despite its widespread application, the process is associated with significant limitations due to the cryo-induced cellular damage that occurs during freezing and thawing. These injuries primarily affect the plasma membrane, nuclear DNA, and motility, thereby compromising the fertilizing potential of spermatozoa. Furthermore, interspecies variability in terms of cryo-sensitivity poses a major challenge to the development of standardized cryopreservation protocols. Recent advances have focused on mitigating cryodamage through the use of various strategies. The inclusion of antioxidants in cryopreservation media has proven effective in reducing oxidative stress, thereby enhancing cellular protection. Similarly, the addition of lipid-based supplements contributes to membrane stabilization, improving post-thaw sperm viability and functionality. Moreover, the application of omics technologies, such as transcriptomics and proteomics, has facilitated a deeper understanding of molecular damage and protective responses, paving the way for the development of tailored, species-specific protocols. These integrated approaches optimize cryopreservation conditions, maximizing post-thaw survival and the fertilizing capacity of sperm. Enhancing cryopreservation techniques not only improves the outcomes of assisted reproductive technologies, but also plays a crucial role in the conservation of genetically valuable livestock species. In conclusion, the integration of biotechnological and molecular tools holds significant promise for overcoming the current limitations and advancing the efficacy of sperm cryopreservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animals
Animals Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍: Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信