Andrew J Steinberger, Juliana Leite de Campos, Ashley E Kates, Tony L Goldberg, Pamela L Ruegg, Nasia Safdar, Ajay K Sethi, John M Shutske, Garret Suen
{"title":"评估奶牛场使用抗菌剂对牛粪便微生物组的影响。","authors":"Andrew J Steinberger, Juliana Leite de Campos, Ashley E Kates, Tony L Goldberg, Pamela L Ruegg, Nasia Safdar, Ajay K Sethi, John M Shutske, Garret Suen","doi":"10.3390/ani15121735","DOIUrl":null,"url":null,"abstract":"<p><p>Rising rates of antimicrobial-resistant infections have prompted increased scrutiny on antimicrobial use (AMU) in livestock agriculture. Dairy farms primarily use antimicrobials to maintain animal health and welfare by treating and preventing infectious diseases. However, the impact of dairy farm AMU practices on the cattle fecal microbiome remains largely unclear, partly due to difficulties in quantifying AMU. This study leveraged quantitative AMU data from 40 large commercial dairy farms to identify farms with low (n = 4) and high (n = 4) AMU. Using 16S rRNA gene amplicon sequencing, we compared the fecal bacterial communities of dairy calves and cows (healthy, cull, sick) by both AMU designation (high/low) and by individual farm AMU, summarized by animal defined daily dose (DDD) and mg/kg. We found significant differences in beta-diversity between cattle from high- and low-AMU groups using either method and found that <i>Corynebacterium</i> and <i>Clostridium</i> abundances increased with farm AMU. Additionally, we found fecal bacterial communities differed across farms within high- and low-AMU groupings, highlighting the need to account for farm-to-farm variation when assessing AMU impacts. These findings suggest that dairy farm AMU influences the fecal microbiome and identifies specific taxa that warrant further investigation as potential reservoirs for antimicrobial resistance genes.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189718/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessing the Impacts of Dairy Farm Antimicrobial Use on the Bovine Fecal Microbiome.\",\"authors\":\"Andrew J Steinberger, Juliana Leite de Campos, Ashley E Kates, Tony L Goldberg, Pamela L Ruegg, Nasia Safdar, Ajay K Sethi, John M Shutske, Garret Suen\",\"doi\":\"10.3390/ani15121735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rising rates of antimicrobial-resistant infections have prompted increased scrutiny on antimicrobial use (AMU) in livestock agriculture. Dairy farms primarily use antimicrobials to maintain animal health and welfare by treating and preventing infectious diseases. However, the impact of dairy farm AMU practices on the cattle fecal microbiome remains largely unclear, partly due to difficulties in quantifying AMU. This study leveraged quantitative AMU data from 40 large commercial dairy farms to identify farms with low (n = 4) and high (n = 4) AMU. Using 16S rRNA gene amplicon sequencing, we compared the fecal bacterial communities of dairy calves and cows (healthy, cull, sick) by both AMU designation (high/low) and by individual farm AMU, summarized by animal defined daily dose (DDD) and mg/kg. We found significant differences in beta-diversity between cattle from high- and low-AMU groups using either method and found that <i>Corynebacterium</i> and <i>Clostridium</i> abundances increased with farm AMU. Additionally, we found fecal bacterial communities differed across farms within high- and low-AMU groupings, highlighting the need to account for farm-to-farm variation when assessing AMU impacts. These findings suggest that dairy farm AMU influences the fecal microbiome and identifies specific taxa that warrant further investigation as potential reservoirs for antimicrobial resistance genes.</p>\",\"PeriodicalId\":7955,\"journal\":{\"name\":\"Animals\",\"volume\":\"15 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189718/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animals\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/ani15121735\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15121735","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Assessing the Impacts of Dairy Farm Antimicrobial Use on the Bovine Fecal Microbiome.
Rising rates of antimicrobial-resistant infections have prompted increased scrutiny on antimicrobial use (AMU) in livestock agriculture. Dairy farms primarily use antimicrobials to maintain animal health and welfare by treating and preventing infectious diseases. However, the impact of dairy farm AMU practices on the cattle fecal microbiome remains largely unclear, partly due to difficulties in quantifying AMU. This study leveraged quantitative AMU data from 40 large commercial dairy farms to identify farms with low (n = 4) and high (n = 4) AMU. Using 16S rRNA gene amplicon sequencing, we compared the fecal bacterial communities of dairy calves and cows (healthy, cull, sick) by both AMU designation (high/low) and by individual farm AMU, summarized by animal defined daily dose (DDD) and mg/kg. We found significant differences in beta-diversity between cattle from high- and low-AMU groups using either method and found that Corynebacterium and Clostridium abundances increased with farm AMU. Additionally, we found fecal bacterial communities differed across farms within high- and low-AMU groupings, highlighting the need to account for farm-to-farm variation when assessing AMU impacts. These findings suggest that dairy farm AMU influences the fecal microbiome and identifies specific taxa that warrant further investigation as potential reservoirs for antimicrobial resistance genes.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).