Huan Zhang, Zhuoru Dai, Xiaochen Zhang, Meiqi Shang, Xiaoru Gao, Ruiqi Ma, Limeng Zhao, Xiaoli Zhang, Qingchang Liu, Hong Zhai, Shaopei Gao, Ning Zhao, Qinghe Cao, Qiang Li, Shaozhen He
{"title":"IbCHYR1-IbZnFR复合体天然等位基因变异调控甘薯根腐病抗性","authors":"Huan Zhang, Zhuoru Dai, Xiaochen Zhang, Meiqi Shang, Xiaoru Gao, Ruiqi Ma, Limeng Zhao, Xiaoli Zhang, Qingchang Liu, Hong Zhai, Shaopei Gao, Ning Zhao, Qinghe Cao, Qiang Li, Shaozhen He","doi":"10.1002/advs.202415202","DOIUrl":null,"url":null,"abstract":"<p><p>Sweet potato (Ipomoea batatas) is a globally important autohexaploid root and tuber crop. Fusarium root rot threatens its entire growth, harvest, and storage period, thereby reducing yield and quality. Therefore, a deeper understanding of Fusarium pathogenicity and sweet potato defense is urgently required. Here, two single nucleotide polymorphisms are identified within the promoter region of the I. batatas CHY zinc-finger and ring protein1 (IbCHYR1) gene that encode an E3 ubiquitin ligase linked to root rot resistance. In susceptible varieties, the high dosage allele Pro::IbCHYR1<sup>Hap1</sup> leads to increased expression of IbCHYR1. Overexpression of IbCHYR1 increases susceptibility to root rot and Fusarium wilt. IbCHYR1 interacts with the I. batatas CCCH-type zinc-finger protein (IbZnFR) to promote its degradation. IbZnFR confers resistance to root rot and Fusarium wilt and improves yield by more than 10%. The high dosage Pro::IbZnFR<sup>Hap2</sup> allele is associated with resistance to root rot disease. Moreover, FfRlpA2, a conserved Fusarium effector, is identified as a protease inhibitor that stabilizes and hijacks IbCHYR1 to degrade IbZnFR, thereby inhibiting multiple defense pathways. These findings provide insights into Fusarium pathogenicity and a genetic basis for root rot research and improvement of disease-resistant sweet potato varieties.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e15202"},"PeriodicalIF":14.3000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural Allelic Variations in IbCHYR1-IbZnFR Complex Regulate Fusarium Root Rot Resistance in Sweet Potato.\",\"authors\":\"Huan Zhang, Zhuoru Dai, Xiaochen Zhang, Meiqi Shang, Xiaoru Gao, Ruiqi Ma, Limeng Zhao, Xiaoli Zhang, Qingchang Liu, Hong Zhai, Shaopei Gao, Ning Zhao, Qinghe Cao, Qiang Li, Shaozhen He\",\"doi\":\"10.1002/advs.202415202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sweet potato (Ipomoea batatas) is a globally important autohexaploid root and tuber crop. Fusarium root rot threatens its entire growth, harvest, and storage period, thereby reducing yield and quality. Therefore, a deeper understanding of Fusarium pathogenicity and sweet potato defense is urgently required. Here, two single nucleotide polymorphisms are identified within the promoter region of the I. batatas CHY zinc-finger and ring protein1 (IbCHYR1) gene that encode an E3 ubiquitin ligase linked to root rot resistance. In susceptible varieties, the high dosage allele Pro::IbCHYR1<sup>Hap1</sup> leads to increased expression of IbCHYR1. Overexpression of IbCHYR1 increases susceptibility to root rot and Fusarium wilt. IbCHYR1 interacts with the I. batatas CCCH-type zinc-finger protein (IbZnFR) to promote its degradation. IbZnFR confers resistance to root rot and Fusarium wilt and improves yield by more than 10%. The high dosage Pro::IbZnFR<sup>Hap2</sup> allele is associated with resistance to root rot disease. Moreover, FfRlpA2, a conserved Fusarium effector, is identified as a protease inhibitor that stabilizes and hijacks IbCHYR1 to degrade IbZnFR, thereby inhibiting multiple defense pathways. These findings provide insights into Fusarium pathogenicity and a genetic basis for root rot research and improvement of disease-resistant sweet potato varieties.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e15202\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202415202\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202415202","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Natural Allelic Variations in IbCHYR1-IbZnFR Complex Regulate Fusarium Root Rot Resistance in Sweet Potato.
Sweet potato (Ipomoea batatas) is a globally important autohexaploid root and tuber crop. Fusarium root rot threatens its entire growth, harvest, and storage period, thereby reducing yield and quality. Therefore, a deeper understanding of Fusarium pathogenicity and sweet potato defense is urgently required. Here, two single nucleotide polymorphisms are identified within the promoter region of the I. batatas CHY zinc-finger and ring protein1 (IbCHYR1) gene that encode an E3 ubiquitin ligase linked to root rot resistance. In susceptible varieties, the high dosage allele Pro::IbCHYR1Hap1 leads to increased expression of IbCHYR1. Overexpression of IbCHYR1 increases susceptibility to root rot and Fusarium wilt. IbCHYR1 interacts with the I. batatas CCCH-type zinc-finger protein (IbZnFR) to promote its degradation. IbZnFR confers resistance to root rot and Fusarium wilt and improves yield by more than 10%. The high dosage Pro::IbZnFRHap2 allele is associated with resistance to root rot disease. Moreover, FfRlpA2, a conserved Fusarium effector, is identified as a protease inhibitor that stabilizes and hijacks IbCHYR1 to degrade IbZnFR, thereby inhibiting multiple defense pathways. These findings provide insights into Fusarium pathogenicity and a genetic basis for root rot research and improvement of disease-resistant sweet potato varieties.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.