具有氧化还原适应性催化的三酶模拟锰纳米酶在急性痛风中的协同MSU降解和炎症消退。

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Yuxuan Lin, Zhenglin Zhu, Zhengjiang Xu, Junkang Chen, Zhiqiang Li, Hui Huang, Yuan Zhang, Di Chen, Bo Liang, Guocheng Wang
{"title":"具有氧化还原适应性催化的三酶模拟锰纳米酶在急性痛风中的协同MSU降解和炎症消退。","authors":"Yuxuan Lin, Zhenglin Zhu, Zhengjiang Xu, Junkang Chen, Zhiqiang Li, Hui Huang, Yuan Zhang, Di Chen, Bo Liang, Guocheng Wang","doi":"10.1002/adhm.202502180","DOIUrl":null,"url":null,"abstract":"<p><p>Acute gout, characterized by recurrent inflammatory flares caused by monosodium urate (MSU) crystal deposition, presents a therapeutic challenge due to the limited efficacy of current drugs in concurrently eliminating MSU crystals and resolving inflammation. To overcome this, a manganese-based nanozyme derived from a ZIF-8 metal-organic framework (MOF) is developed, which is designed to avoid the reliance on precious metals seen in existing urate oxidase-mimetic systems. By leveraging competitive coordination between zinc and manganese during MOF synthesis, atomic-level dispersion of manganese active sites with precise modulation of the Mn<sup>4+</sup>/Mn<sup>2+</sup> redox equilibrium is achieved. Coupled with optimized pyrrolic/graphitic nitrogen configurations, the nanozyme demonstrates triple enzymatic activities: urate oxidase-like activity for uric acid degradation (preventing MSU crystallization), catalase-like activity for H<sub>2</sub>O<sub>2</sub> scavenging, and superoxide dismutase-like activity to alleviate oxidative stress. Notably, the nanozyme directly destabilizes preformed MSU crystals via surface charge modulation and lattice disruption. In an acute gout model, the nanozyme surpasses colchicine in accelerating MSU clearance-through simultaneous dissolution of existing crystals and inhibition of new formation-while reducing inflammatory cytokine levels without systemic toxicity. This work introduces a redox-adaptive nanozyme design strategy for managing crystalopathies, providing a dual-action solution to combat both MSU-driven inflammation and crystallization.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2502180"},"PeriodicalIF":10.0000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triple-Enzyme Mimetic Manganese Nanozyme with Redox-Adaptive Catalysis for Synergistic MSU Degradation and Inflammation Resolution in Acute Gout.\",\"authors\":\"Yuxuan Lin, Zhenglin Zhu, Zhengjiang Xu, Junkang Chen, Zhiqiang Li, Hui Huang, Yuan Zhang, Di Chen, Bo Liang, Guocheng Wang\",\"doi\":\"10.1002/adhm.202502180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute gout, characterized by recurrent inflammatory flares caused by monosodium urate (MSU) crystal deposition, presents a therapeutic challenge due to the limited efficacy of current drugs in concurrently eliminating MSU crystals and resolving inflammation. To overcome this, a manganese-based nanozyme derived from a ZIF-8 metal-organic framework (MOF) is developed, which is designed to avoid the reliance on precious metals seen in existing urate oxidase-mimetic systems. By leveraging competitive coordination between zinc and manganese during MOF synthesis, atomic-level dispersion of manganese active sites with precise modulation of the Mn<sup>4+</sup>/Mn<sup>2+</sup> redox equilibrium is achieved. Coupled with optimized pyrrolic/graphitic nitrogen configurations, the nanozyme demonstrates triple enzymatic activities: urate oxidase-like activity for uric acid degradation (preventing MSU crystallization), catalase-like activity for H<sub>2</sub>O<sub>2</sub> scavenging, and superoxide dismutase-like activity to alleviate oxidative stress. Notably, the nanozyme directly destabilizes preformed MSU crystals via surface charge modulation and lattice disruption. In an acute gout model, the nanozyme surpasses colchicine in accelerating MSU clearance-through simultaneous dissolution of existing crystals and inhibition of new formation-while reducing inflammatory cytokine levels without systemic toxicity. This work introduces a redox-adaptive nanozyme design strategy for managing crystalopathies, providing a dual-action solution to combat both MSU-driven inflammation and crystallization.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2502180\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202502180\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202502180","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

急性痛风以尿酸钠(MSU)晶体沉积引起的复发性炎症为特征,由于目前药物在同时消除MSU晶体和缓解炎症方面的疗效有限,因此对治疗提出了挑战。为了克服这一点,研究人员开发了一种基于锰的纳米酶,该纳米酶来源于ZIF-8金属有机框架(MOF),旨在避免在现有的尿酸氧化酶模拟系统中看到的对贵金属的依赖。通过在MOF合成过程中利用锌和锰之间的竞争配位,通过精确调节Mn4+/Mn2+氧化还原平衡,实现了锰活性位点的原子水平分散。再加上优化的吡啶/石墨氮结构,纳米酶具有三重酶活性:尿酸降解(防止MSU结晶)的类似尿酸氧化酶活性,清除H2O2的类似过氧化氢酶活性,以及缓解氧化应激的类似超氧化物歧化酶活性。值得注意的是,纳米酶通过表面电荷调制和晶格破坏直接破坏预制的MSU晶体的稳定性。在急性痛风模型中,纳米酶在加速MSU清除方面优于秋水仙碱——通过同时溶解现有晶体和抑制新晶体的形成——同时降低炎症细胞因子水平,而没有全身毒性。这项工作介绍了一种用于管理晶体病变的氧化还原适应性纳米酶设计策略,提供了一种双重作用的解决方案来对抗msu驱动的炎症和结晶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triple-Enzyme Mimetic Manganese Nanozyme with Redox-Adaptive Catalysis for Synergistic MSU Degradation and Inflammation Resolution in Acute Gout.

Acute gout, characterized by recurrent inflammatory flares caused by monosodium urate (MSU) crystal deposition, presents a therapeutic challenge due to the limited efficacy of current drugs in concurrently eliminating MSU crystals and resolving inflammation. To overcome this, a manganese-based nanozyme derived from a ZIF-8 metal-organic framework (MOF) is developed, which is designed to avoid the reliance on precious metals seen in existing urate oxidase-mimetic systems. By leveraging competitive coordination between zinc and manganese during MOF synthesis, atomic-level dispersion of manganese active sites with precise modulation of the Mn4+/Mn2+ redox equilibrium is achieved. Coupled with optimized pyrrolic/graphitic nitrogen configurations, the nanozyme demonstrates triple enzymatic activities: urate oxidase-like activity for uric acid degradation (preventing MSU crystallization), catalase-like activity for H2O2 scavenging, and superoxide dismutase-like activity to alleviate oxidative stress. Notably, the nanozyme directly destabilizes preformed MSU crystals via surface charge modulation and lattice disruption. In an acute gout model, the nanozyme surpasses colchicine in accelerating MSU clearance-through simultaneous dissolution of existing crystals and inhibition of new formation-while reducing inflammatory cytokine levels without systemic toxicity. This work introduces a redox-adaptive nanozyme design strategy for managing crystalopathies, providing a dual-action solution to combat both MSU-driven inflammation and crystallization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信