Nikhil Dev Narendradev, Soumitra Marathe, Sabyasachi Baboo, Daniel B McClatchy, Jolene K Diedrich, Parul Jain, Rahul Purwar, John R Yates, Srinivasa Murty Srinivasula
{"title":"定量蛋白质组学分析显示JMJD6和DNAJB11是E3连接酶RFFL的内源性底物。","authors":"Nikhil Dev Narendradev, Soumitra Marathe, Sabyasachi Baboo, Daniel B McClatchy, Jolene K Diedrich, Parul Jain, Rahul Purwar, John R Yates, Srinivasa Murty Srinivasula","doi":"10.1021/acs.jproteome.5c00086","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitin-proteasome system contributes to protein quality control, involving E3 ligases that ubiquitinate proteins and leading to their degradation. The dysregulation of protein degradation results in the abnormal accumulation of proteins and is implicated in the pathology of diverse diseases, making targeted protein degradation a promising therapeutic strategy. Here, we focus on RFFL, an endosome-associated RING E3 ligase involved in mitochondrial homeostasis and the clearance of misfolded cystic fibrosis transmembrane conductance regulator proteins. Using label-free quantitative mass spectrometry based proteomics for interactome and differential expression analyses, we systematically investigated and identified putative substrates of RFFL. For more confident identification, we performed these analyses on three cell lines that we generated: an RFFL knockout cell line generated using CRISPR/Cas9, another cell line rescuing RFFL expression when complemented with KO cells with stably expressing RFFL cDNA, and wild-type cells. We validated JMJD6 and DNAJB11 as substrates of endogenous RFFL, providing orthogonal validation and confidence in our screening approach. We demonstrated that RFFL ubiquitinates and degrades JMJD6 and DNAJB11 via the proteasomal pathway using in vivo assays. Interestingly, we also discovered a hitherto unknown role of RFFL in lipid metabolism. Collectively, this study provides the first comprehensive and unbiased analysis of RFFL substrates employing multiple complementary approaches.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative Proteomic Analysis Reveals JMJD6 and DNAJB11 as Endogenous Substrates of E3 Ligase RFFL.\",\"authors\":\"Nikhil Dev Narendradev, Soumitra Marathe, Sabyasachi Baboo, Daniel B McClatchy, Jolene K Diedrich, Parul Jain, Rahul Purwar, John R Yates, Srinivasa Murty Srinivasula\",\"doi\":\"10.1021/acs.jproteome.5c00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquitin-proteasome system contributes to protein quality control, involving E3 ligases that ubiquitinate proteins and leading to their degradation. The dysregulation of protein degradation results in the abnormal accumulation of proteins and is implicated in the pathology of diverse diseases, making targeted protein degradation a promising therapeutic strategy. Here, we focus on RFFL, an endosome-associated RING E3 ligase involved in mitochondrial homeostasis and the clearance of misfolded cystic fibrosis transmembrane conductance regulator proteins. Using label-free quantitative mass spectrometry based proteomics for interactome and differential expression analyses, we systematically investigated and identified putative substrates of RFFL. For more confident identification, we performed these analyses on three cell lines that we generated: an RFFL knockout cell line generated using CRISPR/Cas9, another cell line rescuing RFFL expression when complemented with KO cells with stably expressing RFFL cDNA, and wild-type cells. We validated JMJD6 and DNAJB11 as substrates of endogenous RFFL, providing orthogonal validation and confidence in our screening approach. We demonstrated that RFFL ubiquitinates and degrades JMJD6 and DNAJB11 via the proteasomal pathway using in vivo assays. Interestingly, we also discovered a hitherto unknown role of RFFL in lipid metabolism. Collectively, this study provides the first comprehensive and unbiased analysis of RFFL substrates employing multiple complementary approaches.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.5c00086\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.5c00086","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Quantitative Proteomic Analysis Reveals JMJD6 and DNAJB11 as Endogenous Substrates of E3 Ligase RFFL.
The ubiquitin-proteasome system contributes to protein quality control, involving E3 ligases that ubiquitinate proteins and leading to their degradation. The dysregulation of protein degradation results in the abnormal accumulation of proteins and is implicated in the pathology of diverse diseases, making targeted protein degradation a promising therapeutic strategy. Here, we focus on RFFL, an endosome-associated RING E3 ligase involved in mitochondrial homeostasis and the clearance of misfolded cystic fibrosis transmembrane conductance regulator proteins. Using label-free quantitative mass spectrometry based proteomics for interactome and differential expression analyses, we systematically investigated and identified putative substrates of RFFL. For more confident identification, we performed these analyses on three cell lines that we generated: an RFFL knockout cell line generated using CRISPR/Cas9, another cell line rescuing RFFL expression when complemented with KO cells with stably expressing RFFL cDNA, and wild-type cells. We validated JMJD6 and DNAJB11 as substrates of endogenous RFFL, providing orthogonal validation and confidence in our screening approach. We demonstrated that RFFL ubiquitinates and degrades JMJD6 and DNAJB11 via the proteasomal pathway using in vivo assays. Interestingly, we also discovered a hitherto unknown role of RFFL in lipid metabolism. Collectively, this study provides the first comprehensive and unbiased analysis of RFFL substrates employing multiple complementary approaches.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".