Tyler R. Abruzzo, Michael G. Frisk, Liam Butler, Matthew Sclafani, Paul Nunnenkamp, Rachel Sysak, Robert M. Cerrato
{"title":"耦合多变量分析揭示了沿海海洋生态系统时空变化的单独气候和局部驱动因素","authors":"Tyler R. Abruzzo, Michael G. Frisk, Liam Butler, Matthew Sclafani, Paul Nunnenkamp, Rachel Sysak, Robert M. Cerrato","doi":"10.1002/ece3.71637","DOIUrl":null,"url":null,"abstract":"<p>Extensive temporal and spatial monitoring data provide an opportunity to identify the drivers of ecosystem change and to understand spatial relationships useful to conservation and management. Such data can potentially overcome the considerable intrinsic variability present in sampling and justify the cost of sustained monitoring. In this study, the temporal and spatial structure and trends in the mobile invertebrate and fish assemblage of the Peconic Estuary were identified. Data were obtained primarily from a small mesh trawl survey conducted by the New York State Department of Environmental Conservation from 1987–2020 at 76 locations distributed throughout the system, supplemented by chlorophyll data and regional climate indices. A set of multivariate statistical tools, including K-means cluster analysis, redundancy analysis, and multiscale ordination, were applied to the data set in a complementary way. Distinctly different drivers for temporal and spatial patterns were found. Abrupt community shifts on a decadal time scale occurred, including a regime shift in 1999–2000, and were driven by changes in regional climate factors as indexed by the unlagged and lagged Atlantic Multidecadal Oscillation and North Atlantic Oscillation. Spatially distinct habitats and assemblages were identified, separating eastern, inshore, and offshore regions of the system. These were differentiated by local conditions in bottom salinity, water depth and depth gradient, DO percent saturation, and water transparency. Each of these regions responded to the climate drivers in a similar way. Notably, annual bottom temperature and chlorophyll <i>a</i> were never found to be effective in explaining community variation. Overall, the results of this study suggest that, given the time lags in response, climate-induced changes in the system can be anticipated by continued monitoring and that conservation and management actions can be applied system-wide and not restricted to specific areas.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71637","citationCount":"0","resultStr":"{\"title\":\"Coupled Multivariate Analyses Reveal Separate Climate and Local Drivers of Temporal and Spatial Change in a Coastal Marine Ecosystem\",\"authors\":\"Tyler R. Abruzzo, Michael G. Frisk, Liam Butler, Matthew Sclafani, Paul Nunnenkamp, Rachel Sysak, Robert M. Cerrato\",\"doi\":\"10.1002/ece3.71637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Extensive temporal and spatial monitoring data provide an opportunity to identify the drivers of ecosystem change and to understand spatial relationships useful to conservation and management. Such data can potentially overcome the considerable intrinsic variability present in sampling and justify the cost of sustained monitoring. In this study, the temporal and spatial structure and trends in the mobile invertebrate and fish assemblage of the Peconic Estuary were identified. Data were obtained primarily from a small mesh trawl survey conducted by the New York State Department of Environmental Conservation from 1987–2020 at 76 locations distributed throughout the system, supplemented by chlorophyll data and regional climate indices. A set of multivariate statistical tools, including K-means cluster analysis, redundancy analysis, and multiscale ordination, were applied to the data set in a complementary way. Distinctly different drivers for temporal and spatial patterns were found. Abrupt community shifts on a decadal time scale occurred, including a regime shift in 1999–2000, and were driven by changes in regional climate factors as indexed by the unlagged and lagged Atlantic Multidecadal Oscillation and North Atlantic Oscillation. Spatially distinct habitats and assemblages were identified, separating eastern, inshore, and offshore regions of the system. These were differentiated by local conditions in bottom salinity, water depth and depth gradient, DO percent saturation, and water transparency. Each of these regions responded to the climate drivers in a similar way. Notably, annual bottom temperature and chlorophyll <i>a</i> were never found to be effective in explaining community variation. Overall, the results of this study suggest that, given the time lags in response, climate-induced changes in the system can be anticipated by continued monitoring and that conservation and management actions can be applied system-wide and not restricted to specific areas.</p>\",\"PeriodicalId\":11467,\"journal\":{\"name\":\"Ecology and Evolution\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71637\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71637\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71637","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Coupled Multivariate Analyses Reveal Separate Climate and Local Drivers of Temporal and Spatial Change in a Coastal Marine Ecosystem
Extensive temporal and spatial monitoring data provide an opportunity to identify the drivers of ecosystem change and to understand spatial relationships useful to conservation and management. Such data can potentially overcome the considerable intrinsic variability present in sampling and justify the cost of sustained monitoring. In this study, the temporal and spatial structure and trends in the mobile invertebrate and fish assemblage of the Peconic Estuary were identified. Data were obtained primarily from a small mesh trawl survey conducted by the New York State Department of Environmental Conservation from 1987–2020 at 76 locations distributed throughout the system, supplemented by chlorophyll data and regional climate indices. A set of multivariate statistical tools, including K-means cluster analysis, redundancy analysis, and multiscale ordination, were applied to the data set in a complementary way. Distinctly different drivers for temporal and spatial patterns were found. Abrupt community shifts on a decadal time scale occurred, including a regime shift in 1999–2000, and were driven by changes in regional climate factors as indexed by the unlagged and lagged Atlantic Multidecadal Oscillation and North Atlantic Oscillation. Spatially distinct habitats and assemblages were identified, separating eastern, inshore, and offshore regions of the system. These were differentiated by local conditions in bottom salinity, water depth and depth gradient, DO percent saturation, and water transparency. Each of these regions responded to the climate drivers in a similar way. Notably, annual bottom temperature and chlorophyll a were never found to be effective in explaining community variation. Overall, the results of this study suggest that, given the time lags in response, climate-induced changes in the system can be anticipated by continued monitoring and that conservation and management actions can be applied system-wide and not restricted to specific areas.
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.